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ABSTRACT 

TOWARDS A MICROSCOPIC ENERGY DENSITY FUNCTIONAL 

FOR NUCLEI 

By 

Biruk B. Gebremariam 

In spite of their tremendous success, the limitations of current nucleax energy density 

functionals (EDFs), all parameterized empirically in the form of the local Skyrme, 

the nonlocal Gogny or relativistic functionals, have become apparent in the past sev-

eral years. In order to address these deficiencies, a current objective of low-energy 

nuclear theory is to build non-empirical nuclear EDFs from underlying two-, three-

and possibly four-nucleon interactions and many-body perturbation theory (MBPT). 

In this work, the first step towards that goal is tåken by calculating the HF contri-

bution from the chiral EFT two- and three-nucleon interaction at N2LO. The density 

matrix expansion (DME) of Negele and Vautherin is a convenient method to map 

the highly non-local Hartree-Fock expression into the form of a quasi-local Skyrme-

like functional with density dependent couplings. Reformulating the DME in terms 

of phase space averaging (PSA) techniques, we show that the resulting DME, PSA-

DME, is more general and has a significantly better accuracy for spin-unsaturated 

systems than the original DME of Negele and Vautherin. This is achieved without 

compromising the accuracy of PSA-DME for spin-saturated ones. Imposing the as-

sumption of time-reversal invariance, we apply PSA-DME to the HF energy from the 

chiral EFT two- and three-nucleon interaction (at N2LO) and calculate the couplings 

of the emerging EDF analytically using a combination of analytical and symbolic 

approaches. Subsequently, we perform preliminary analysis of these couplings and 

show that their density dependence is driven by the long-range (pion-exchange) part 

of the interaction. Finally, we discuss the UNEDF semi-phenomenological approach 

that is attempting to utilize the results of this work. 



DEDICATION 

In loving memory of my aunt, Sebchiya Gebremariam, whose love and support I 

still miss. 

To my wife, Eden T. Elos, whose love I cherish. 

To my dearest friend, Misganaw A. Gashaw, "guadea!" our time-like worldlines 

should cross soon! 

m 



ACKNOWLEDGMENT 

I am indebted to my professors, Thomas Duguet and Scott Bogner, who provided me 

with all sorts of support in my research endeavor. I was hicky to tap into a much wider 

knowledge base than the typical graduate student. Besides helping me connect the 

major dots, the fact that they had the patience to let me explore problems in my own 

way has been a wonderful experience. I am deeply grateful for all of that. I would also 

like to thank the members of my guidance committee: Mark Dykman, Piotr Piecuch 

and Brad Sherrill for their helpful suggestions, comments and encouragements. 

Next, I would like to show my gratitude to my fellow graduate students, office-

mates and friends. I should specially mention Jacob Clifford, Morewell Gaseller, 

Jeremy Armstrong, Ivan Brida, Angelo Signoracci, Liyuan Jia and Rhiannon Meharc-

hand. Thanks for making me feel at home. Be it two of my three passions, science 

and soccer, we always had something to discuss. As to satisfying my third passion, 

literature and painting, Daniel Berhanemeskel, you played the main role there and I 

owe you a big thank you. 

The perfect learning and research environment that the cyclotron and physics 

and astronomy department provided was one of the main ingredients for my suc-

cessful completion of this PhD research project. Starting with the highly helpful 

administrative personnel and scientists to the availability of top-notch computer soft-

wares, it is really a magnificent place to do one's research. In short, thanks! Talking 

of top-notch softwares, I should specially mention Wolfram Research's Mathematica. 

Here is my appreciation for powering my innovation. I also extend my gratitude to all 

members of the UNEDF collaboration, and the microscopic EDF group in particular, 

for letting me be a part of this wonderful collaboration. 

My unique appreciation goes to my dearest wife Eden T. Elos. Her love, support 

and pragmatism have been and are very important in pulling me out of the often-

romantic world that I create around myself. A friend in need is ... so goes the saying. 

iv 



And I say, Mesge, you are indeed one true friend. I thank you for all the walks that 

we had in life, be it physically through the streets of Addis or telepathically when I 

am in East Lansing and you back home. Finally, thank you all my family members 

in Addis and Denver, especially my mom Belaynesh Seifu, Mulumebet Asfaw and 

Tekleab Hailu, and friends for all your love, good thoughts and understanding. Hey, 

mom! I have arrived now. 

v 



TABLE OF CONTENTS 

List of Tables xii 

List of Figures xiii 

1 Low-energy Nuclear Physics 1 
1.1 Introduction 1 
1.2 Conventions and Notations 7 

2 Nuclear Interactions 9 
2.1 Historical highlights 9 
2.2 Symraetry Properties of Nuclear Interactions 10 
2.3 Remarks on high-Precision Phenomenological Models 14 
2.4 Chiral EFT Models 15 

2.4.1 NN part at N2LO 16 
2.4.2 NNN part at N2LO 19 

The E-term 19 
TheD-term 19 
The C-term 20 
Low energy constants and parameters of the NNN interaction 

at N2LO 20 

3 The Nuclear Many-Body Problem 22 
3.1 Remark on ab-initio/MBPT-based methods 22 
3.2 Goldstone-Brueckner formalism 23 

3.2.1 Expansion of the ground-state wave-function and energy . . . 26 
Hole-line expansion for non-perturbative potentials 26 
Perturbative expansion 27 

3.2.2 Choice of the one-body potential T 27 

4 Phenomenological Energy Density 
Functionals 29 
4.1 Phenomenological Nuclear Energy Density 

Functionals 29 
4.1.1 Motivation from density functional theory 29 
4.1.2 Single- and multi-reference EDF formulations 33 

4.2 Skyrme energy density functionals 35 
4.2.1 Particle-hole functional 35 
4.2.2 Particle-particle functional 37 
4.2.3 Self-consistent solution 38 

vi 



4.2.4 Existing parameterizations 39 
4.2.5 Predictive power of empirical EDFs 39 
4.2.6 Outlook 42 

5 Constructing Non-Empirical Energy Density Functionals 45 
5.1 Constructing Non-Empirical Energy Density Functional 45 

5.1.1 Philosophy, Goals and Limitations 46 
5.2 The Density Matrix Expansion (DME) 52 

5.2.1 Basics of the DME 53 
5.2.2 Existing variants of the DME 55 

5.3 PSA-DME 56 
5.3.1 Motivation for a PSA reformulation of the DME 56 
5.3.2 Momentum phase-space of finite Fermi systems 58 
5.3.3 PSA-DME for the scalar part of the OBDM of time-reversal 

invariant systems 62 
5.3.4 PSA-DME for the vector part of the OBDM in time-reversal 

invariant systems 67 
5.3.5 kq

F and isospin invariance of the resulting EDF 71 
5.3.6 Extension to non-time-reversal invariant systems 72 

Constraints on the n—functions 76 
5.3.7 Remarks on the DME of the local densities 80 
5.3.8 Remarks on the DME of the anomalous densities 86 

5.4 Accuracy of DME 91 
5.4.1 Inputs to non-self-consistent tests 92 
5.4.2 Fock contribution from Ve 93 
5.4.3 Fock contribution from Vp 99 
5.4.4 Fock contribution from Vis 106 

Basic analysis 106 
Further investigation of the spin-orbit exchange 110 

5.4.5 Hartree contribution from Ve, VLS and Vj- 115 
5.4.6 Preliminary self-consistent tests 118 

6 Non-Empirical Energy Density Functional from N N interaction 123 
6.1 The HF energy from an NN interaction 123 

6.1.1 HF contribution from a central interaction 126 
6.1.2 HF contribution from the spin-orbit interaction 128 
6.1.3 HF contribution from the tensor interaction 129 
6.1.4 Additional contributions to the HF energy 131 
6.1.5 The leading-order pairing contribution 133 

6.2 Application of the DME to the NN-HF energy 133 
6.2.1 Analytical couplings from the chiral EFT NN interaction at N2L0136 
6.2.2 Single-particle fields and equations of motion 138 

vu 



7 Non-Empirical Energy Density Functional from Chiral EFT N N N 
Interaction at N2LO 140 
7.1 The Hartree-Fock energy- from Chiral EFT NNN interaction at N2LO 141 

Basic form of the HF energy 142 
HF energy- from the E-term 147 
HF energy from the D-term 147 
HF energy from the C-term 148 

7.2 DME for the HF energy from chiral EFT N2LO 3NF in time-reversal 
invariant systems 149 
7.2.1 Generic forms of the 3NF energy expressions 150 

Generic-Form-1 151 
Generic-Form-2 151 
Generic-Form-3 152 

7.2.2 The DME-coordinate system 152 
7.2.3 Generalized PSA-DME 153 

Infinite nuclear matter limit 155 
7.2.4 The resulting EDF 155 

Comments on the second-order truncation for spherical systems 158 
7.3 Analytical Couplings from the chiral EFT NNN interaction at N2LO 

for time-reversal invariant systems 160 
Comparison of analytical and Monte-Carlo results 162 

8 Semi-phenomenological EDF, Future Extensions and Conclusions 168 
8.1 The semi-phenomenological approach 168 
8.2 Key future extensions 173 
8.3 Conclusion 176 

9 Appendix 178 
9.1 Mathematical Formulae 178 

9.1.1 Miscellaneous elementary formulae 178 
9.1.2 Clebsh-Gordon, Wigner 3-J and 6-J coefficients 180 
9.1.3 A few special functions 182 

Legendre polynomials 182 
Laguerre polynomials 183 
Gamma functions 184 
Spherical harmonics 184 
Bessel functions 185 

9.1.4 Three-dimensional spherical harmonic oscillator eigenfunctions 186 
9.1.5 Gegenbaur expansion 187 
9.1.6 Functional derivatives 188 

9.2 The one-body density matrix and densities 188 
9.2.1 Properties of single particle states 189 
9.2.2 One-body density matrix 190 
9.2.3 Local densities 191 

vm 



9.2.4 Properties under time reversal 192 
9.2.5 Extension to anomalous contractions 193 
9.2.6 Relations among the densities 195 

9.3 Local Gauge transformation of the OBDM and local densities . . . . 197 
9.3.1 Local Gauge transformation in many-body physics 198 

Conventional formulation 198 
Second quantization formulation 198 

9.3.2 Local Gauge transformation of normal densities 200 
9.3.3 Local Gauge transformation of anomalous densities 201 

9.4 Densities in spherical systems 202 
9.4.1 Expression for the normal densities in spherical symmetry . . 203 

Scalar part of the density matrix - matter density 203 
Kinetic density 204 
The vector part of the density matrix - Spin density 205 
Spin-orbit density 209 

9.4.2 Expression for the anomalous densities in spherical symmetry 210 
pairing density 211 
Pairing kinetic density 211 
Pairing spin-orbit density 211 

9.5 Details on the density matrix expansion 212 
9.5.1 Husimi distribution and the local anisotropy P^if) 212 
9.5.2 Wigner transform of the pg(ri,f2) up to h2 214 
9.5.3 Generalized PSA-DME 217 
9.5.4 Generalized PSA-DME for the scalar part of the OBDM . . . 218 

Recovering previous DMEs of the scalar part of the OBDM . . 223 
Further approximation with respect to J 224 

9.5.5 Generalized PSA-DME for the vector part of the OBDM . . . 225 
9.5.6 Remarks on the generalized PSA-DME 228 
9.5.7 The modified-Taylor series expansion 228 

9.6 Derivation of EDF from HF energy of local NN interaction 232 
9.6.1 Central contribution 232 
9.6.2 Spin-orbit contribution 234 

Spin-orbit contribution in time-reversal invariant systems . . . 235 
9.6.3 Tensor contribution 236 
9.6.4 Leading-order pairing contribution 237 
9.6.5 The resulting EDF: EDF-NN-DME 237 
9.6.6 Analytical couplings from chiral EFT NN interaction at N2LO 240 

9.7 HFB equations from EDF-NN-DME 243 
9.7.1 The mean field from EDF-NN-DME 245 
9.7.2 The Pairing field from EDF-NN-DME 247 

9.8 Numerical solution of EDF-HF equations in spherical systems . . . . 248 
9.8.1 Full-DME in spherical systems 249 
9.8.2 Exchange-only-DME in spherical systems 250 
9.8.3 Harmonic Oscillator basis expansion method 251 

ix 



Matrix elements of the kinetic part 252 
Matrix elements of the central potential part 253 
Matrix elements of the spin-orbit part 253 

9.8.4 Self-eonsistent iterations and convergence 254 
9.9 The HF energy of chiral EFT NNN interaction at N2LO 254 

9.9.1 Remarks on the symbolic implementation 254 
9.9.2 HF energy from the E-term 255 

Direct part 255 
Single-exchange part 255 
Double-exchange part 255 
E-term contribution for specific systems 256 

9.9.3 HF energy from the D-term 256 
Direct part 256 
Single-exchange part 257 
Double-exchange part 258 
D-term contribution for specific systems 261 

9.9.4 HF energy from the C-term 262 
Direct part 262 
Single-exchange part 263 
Double-exchange part 265 
C-term contribution for specific systems 274 

9.10 Symbolic derivation of EDF-NNN-DME for time-reversal invariance . 275 
9.10.1 Generic DME ansatz 276 

Key points on the DME ansatz 278 
Comments on the DME ansatz 280 

9.10.2 The G-tensors and their analytical forms 280 
9.10.3 Sample DME simplification 284 

Angular integrations for spherical systems 285 
9.10.4 Contributions to EDF-NNN-DME 288 

Fourth order EDF from the D-term 288 
Fourth order EDF from the single-exchange piece of the D-like 

part of the C-term 289 
Fourth order EDF from the double-exchange piece of the D-like 

part of the C-term 289 
Fourth order EDF from the Rl-double-exchange piece of the 

C-term 290 
Fourth order EDF from the R2-double-exchange piece of the 

C-term 291 
Fourth order EDF from the R3-double-exchange piece of the 

C-term 292 
Fourth order EDF from the R4-double-exchange piece of the 

C-term 292 
9.10.5 Extension to deformed time-reversal invariant systems . . . . 293 

x 



9.11 Analytical couplings for the EDF from chiral EFT NNN interaction at 
N2LO 295 
9.11.1 Functional form of the couplings 295 

Couplings from Generic-Form-1 295 
Couplings from Generic-Form-2 296 
Couplings from Generic-Form-3 296 

9.11.2 Matching generalized PSA-DME against the DME-ansatz . . . 297 
9.11.3 Application of Gegenbaur's addition theorem 298 
9.11.4 Analytical and symbolic integration 301 

Bibliography 304 

XI 



LIST OF TABLES 

1.1 Acronyms used in this work 7 

1.2 Definitions and conventions used in this work 8 

2.1 Seven Decades of Struggle: The Theory of Nuclear Forces from Ref. [22]. 10 

2.2 Parameters for chiral EFT NNN interaction at N2LO, with Ax = 

700 [MeV]. Note that the values for c3 and c4 are from Ref. [61]. . . . 21 

4.1 INM properties of Skyrme functionals (from Ref. [81]): saturation den-
sity /9Sat, bulk compressibility Koc, isoscalar effective mass (m*/m)a, 
Thomas-Reiche-Kuhn enhancement factor KV and energy per particle 
at saturation E/A 39 

5.1 MBPT contributions from NN and NNN interactions up to second-
order (Normal contractions) in Hugenholtz representation 48 

5.2 The first-order anomalous/pairing diagrams, otherwise called Bogoli-
ubov contributions, from the NN and NNN interactions in Hugenholtz 
represenation 48 

5.3 The Brink-Boeker force(Bl) 119 

5.4 Full-DME and Exchange-only-DME for Brink-Boeker interaction and 
several DMEs 121 

XII 



LIST OF FIGURES 

Images in this dissertation are presented in color 

1.1 (Color online) A selection of energy/length scales in physics 2 

1.2 (Color online) Low energy static and and dynamical nuclear properties. 3 

1.3 (Color online) The chart of nuclide and the domains of applications of 
the standard nuclear structure method. The black region shows the 
stable nuclei, the green lines show the traditional magic numbers and 
the red curve delimits the experimentally known nuclei. From Ref. [81]. 5 

2.1 Hierarchy of nuclear forces from Chiral Perturbation Theory, classified 
according to a power counting (Q/Ax)

u, and restricted to v < 3 for 
simplicity. Three-body forces appears at next-to-next-to-leading order 
(N2LO), but some of the associated low-energy constants are already 
constrained by the two-body domain (black symbols) while others (gray 
symbols) are to be adjusted on three-body observables. From ref. [81]. 17 

4.1 Illustration of the asymptotic freedom of phenomenological EDF mod-
els in the case of two-neutron separation energies. In the major shell 
where empirical EDFs are adjusted on experimental data, the agree
ment between all relativistic and non-relativistic calculations is clearly 
seen. In the next major shell where no data exist, discrepancies be
tween these models become more apparent (from J. Dobaczewski et 
al. [150]) 41 

xni 



5.1 (Color online) Nuclear matter energy per particle as a function of Fermi 
momentum UF at the Hartree-Fock level (left) and including second-
order (middle) and particle-particle-ladder contributions (right), based 
on evolved N3LO NN potentials and 3NF fit to E%H and r^He. Theo-
retical uncertainties are estimated by the NN (lines) and NNN (band) 
cutoff variations (from Bogner et. al. [28]) 47 

5.2 (Color online) The S-wave solution of the Bethe-Goldsone equation 
and the uncorrelated S-wave function 51 

5.3 The quadrupole anisotropy P^iR) of the local neutron momentum dis-
tribution in a selected set of semi-magic nuclei. The black, red and blue 
vertical lines indicate the approximate half-radii (where the density be-
comes half of the density at the origin) 61 

5.4 (Color online) kF, kF and the isoscalar kF extracted from a converged 
self-consistent calculation of 214Pb, a neutron rich nucleus 72 

5.5 (Color online) pn{r) for 48Cr and 208Pb from a converged self-consistent 
calculation using Sly4 EDF 85 

5.6 (Color online) The parameters for Cr and Pb isotopic chains obtained 
after fitting the neutron density, pn(ri/2), with the 7r—functions as 
given in Eqs. (5.67)-(5.69) 85 

5.7 (Color online) Coherence length £(R) for 2 2 0 , mCa, mNi, W4Sn, 120Sn, 
212Pb (From Pillet et. al. [187]) 89 

5.8 (Color online) \pn(R.,r)\2 calculated with HFB-D1S for 10ASn, 120Sn, 
1285n. Scale has been multiplied by a factor of IO6 (From Pillet et. 
al. [187]) 90 

5.9 (Color online) Comparison of C„n(R,r) and C^DME(R,r) where the 
latter is computed from the n—functions of one of the three DMEs: 
NV-DME, PSA-DME or PSA-DME-II. Upper panels: two-dimensional 
integrands. Lower panels: ratios of C^ME(R,r) over CE

n(R,r) for 
fixed values of R. Densities are obtained from a self-consistent EDF 
calculation of 208Pb with the SLy4 Skyrme EDF in the particle-hole 
part and no pairing 95 

XIV 



5.10 (Color online) Percentage error of EQME\nn\ compared to EE[nn], 
where the former is computed from: NV-DME, PSA-DME or PSA-
DME-IIII—functions. Densities are obtained from self-consistent EDF 
calculations using the SLy4 Skyrme EDF in the particle-hole channel 
and no pairing 97 

5.11 (Color online) The same as Figure 5.10 but for two different values of 
the range of the Gaussian interaction 98 

5.12 (Color online) Comparison of TE
nl(R,r) and T™(E(R,r) where the 

latter is computed from NV-DME, PSA-DME, PSA-DME-II or from 
PSA-DME with P£(R) = 0 which we denote as INM-DME. Upper pan
els: two-dimensional integrands. Lower panels: ratios of T^'(E(R, r) 

over TE
nl(R,r) for fixed values of R. Densities are obtained from a 

converged self-consistent calculation of 208Pb with the SLy4 Skyrme 
EDF in the particle-hole channel and no pairing 101 

5.13 (Color online) Percentage error of E^ME[nn] compared to EE[nn] 
where the former is either computed from: NV-DME, from PSA-DME 
or PSA-DME-II. Densities are obtained from self-consistent EDF cal
culations using the SLy4 Skyrme EDF in the particle-hole channel and 
no pairing. Notice the different vertical scale compared to Fig. 5.10. . 103 

5.14 (Color online) A few representative nuclei with diffuse TE
nl(R, r) to-

gether with absolute EE[nn] for the corresponding isotopic chains. 
Densities are obtained from a self-consistent EDF calculation using 
the SLy4 Skyrme functional in the particle-hole part and no pairing. . 105 

5.15 (Color online) Comparison of LS^n(R, r) and LSF]^ME(R, r) where the 
latter is computed from either NV-DME or PSA-DME. Upper panels: 
two-dimensional integrands. Lower panels: ratios of LS™E(R, r) over 
LSF

n(R,r) for fixed values of R. Densities are obtained from a con
verged self-consistent calculation of 208Pb with the SLy4 Skyrme EDF 
in the particle-hole channel and no pairing 107 

5.16 (Color online) Percentage error of E^g1E[nn] compared to E[s[nn] 
where the latter is either computed from NV-DME or from PSA-DME. 
Densities are obtained from self-consistent EDF calculations using the 
SLy4 Skyrme EDF in the particle-hole channel and no pairing. Notice 
the different vertical scale compared to Figs. 5.10 and 5.13 109 

5.17 (Color online) Ratio of the DME (Eq.(5.101)) over the exact (Eq.(5.58)) 
expressions of the toy nonlocal matter density 112 

xv 



5.18 (Color online) Gratio{R,r) as a function of r for a selected set of 
(R,A,N) 114 

5.19 (Color online) Percentage error of Ec' [nn] with respect to E^[nn] 
for Cr isotopic chain. The upper plots show C%n, and C^DME for 
NV-DME and the parameterized ir—function which we call PI-DME. 117 

5.20 (Color online) LS%n, and LS^DME for NV-DME, with densities ob-
taiend from a converged self-consistent calculation of 208Pb with the 
SLy4 Skyrme EDF in the particle-hole channel and no pairing 118 

5.21 Comparison of Skyrme HFB and DME-based HFB codes 119 

7.1 (Color online) The percentage error of the truncated Gegenbaur expan-
sion with respect to Monte-Carlo based calculation of the contribution 
to E/A in INM. Upper plots show the actual values for the calculation 
based on the truncated Gegenbaur expansion 166 

8.1 (Color online) C^J and C{J couplings from chiral EFT NN interaction 
at N2LO 170 

8.2 (Color online) CQJ couplings from the chiral NN interaction at N2LO 
with error bands from naturalness requirement. 171 

8.3 (Color online) C(J couplings from the chiral NN interaction at N2LO 
with error bands from naturalness requirement 172 

8.4 The saturation curves, W(p, I) of INM using the phenomenological 
SLY4 functional and semi-phenomenological DME-based functionals. 
Here, N2LO includes the contribution from both NN and NNN inter-
actions (From Ref. [164]) 174 

8.5 The same as Fig. 8.4 but for PNM (From Ref. [164]) 174 

9.1 (Color online) R5(k,X2,Xs19) for a set of angles 300 

XVI 



Chapter 1 

Low-energy Nuclear Physics 

1.1 Introduction 

Problems in physics are characterized by different energy or length scales as depicted 

in Fig. 1.1. Low-energy nuclear physics lies well below the energy scale for quantum 

chromodynamics (QCD), AQCD ^ lGeV, and aims at describing nuclear phenomena 

that occur in the energy scale of a few tens of MeV, as characterized by the typical 

Fermi energy. £F. Even though QCD establishes that nucleons, viz, protons and 

neutrons have a complex structure in terms of quarks and gluons, low-energy nuclear 

physics never attempts to resolve their structure as justified by £F/AQCD < 1. Its 

ultimate goal is the proper description of ground- and excited-state properties of 

nuclei and nuclear matter in terms of the interaction between and among the relevant 

low-energy degrees of freedom: protons and neutrons. Fig. 1.2 presents the diversity 

of nuclear properties one is looking after in the realm of low-energy nuclear physics. 

There are several size-dependent and size-independent factors that complexify 

the coherent solution of the nuclear-many body problem. For infinite nuclear mat

ter (INM) and finite-nuclei, the existence of the so-called Coester [[l]-[7]] and Tjon 
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Figure 1.1: (Color online) A selection of energy/length scales in physics. 

lines [8] respectively, point to the fact that the nuclear-many body problem cannot 

be solved successfully without allowing for many-body forces. In addition, in a sys

tem of interacting nucleons, there exist both single-particle and collective excitations, 

such as sound waves in nuclear matter and rotational/vibrational modes in finite-

nuclei, at about the same energy scale. At the same time, most nuclei (i.e. nuclei 

with masses typically between 40 and 350) are intermediate between few-body and 

statistical systems. This renders ab-initio techniques impractical due to computa-

tional complexity especially for systematic studies which involve hundreds of nuclei. 

It also prevents the application of statistical approaches due to the smallness of the 

number of constituents. Furthermore, the need to describe structure and reaction 

interfaces (fission, fusion, nucleon emission at the drip-line...), the existence of a large 

isospin asymmetry, and the essential role of superfluidity adds to the complexity of 

the problem. 

Due to these factors, a coherent understanding and description of nuclear phe-
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Figure 1.2: (Color online) Low energy static and and dynamical nuclear properties. 

nomena remains elusive, in spite of several decades of theoretical and experimental 

investigations. Still, in the last decade, theoretical nuclear physics has seen significant 

progress from several fronts. Some of the main ones that are relevant to this work are 

the construction of nuclear interactions within the frame of chiral effective field the-

ory (EFT) [9] [[10]-[12]], the application of renormalization group techniques to soften 

two- and many-nucleon interactions [[13]-[15]], the use of ab-initio approaches to cal-

culate the properties of increasingly heavier mass nuclei [23], and phenomenological 

energy density functional (EDF) approaches to computationally intensive calculations 

thanks to advances in computing power and numerical algorithms. 

Although high-precision phenomenological two- (NN) and three-nucleon (NNN) 

interactions have existed for some time [[16]-[21]] and have been successfully used 

in nuclear structure and reaction calculations [23], they are inconvenient from both 

theoretical and practical points of view. These interactions lack a controlled expan-

sion scheme that would provide a meaningful estimate of theoretical error bars, and 

there is no clear relation between their NN and NNN parts. Additionally, these phe

nomenological interactions lack a connection to the underlying low-energy QCD. As 



a result, the role of chiral symmetry breaking of QCD which plays a crucial role in 

determining the long-range part of nuclear interactions is not consistently treated in 

such potential models [22]. 

From the viewpoint of nuclear structure calculations, phenomenological interac

tions contain a strong short-range repulsive core, thereby making the nuclear many-

body problem highly non-perturbative. In general, the latter statement also holds 

for chiral EFT interactions which are built with a rather high intrinsic resolution 

scale, A, as this significantly couples low and high momenta [27]. Historically and in 

the context of infmite nuclear matter (INM) calculation, this necessitates an infinite 

re-summation of ladder diagrams, i.e. compute the Brueckner G-matrix, to obtain 

a meaningful starting point for more advanced calculations based on the hole-line 

expansion [[74],[30]]. The hole-line expansion method, usually at the lowest order, 

has been applied to closed-shell medium to heavy nuclei but with little success [38]. 

In the case of light nuclei with A < 12, state of the art Green's function Monte-

Carlo (GFMC) and no-core shell model (NCSM) calculations can be performed with 

impressive results [23]. However, their large computational cost makes them inap-

plicable for beyond A > 12 region. Most recently, CC (coupled-cluster), IT-NCSM 

(importance-truncated no-core shell model) and IT-CI (importance-truncated con-

figuration interaction) have been used to extend the applicability of ab-initio meth-

ods [24, 25]. 

Eventually, nuclear interactions necessarily depend on the resolution scale [27]. 

The realization of low-momentum interactions characterized by a low momentum 

cut-off, A, through renormalization group techniques results in the elimination of the 

non-perturbative aspects, viz, short-range repulsion and tensor forces of conventional 

nuclear interactions [27]. The analysis of Weinberg eigenvalues and the calculations 

of INM equation of state as well as the calculation of a selected set of finite nuclei 

confirm the perturbativeness of low-momentum interactions. As a matter of fact, INM 
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shows saturation already at the HF level, while the empirical saturation properties 

are reproduced satisfactorily at second-order in MBPT [28]. For finite nuclei, the 

energies and radii of a select set of nuclei seem to be remarkably converged at second 

order with good systematics and relatively small corrections coming from particle-hole 

states in the RPA [29]. Still, the application of these ab-initio methods for medium 

to heavy mass nuclei involves considerable numerical complexity. In addition, the 

accuracy of these methods is not on par with the current tool of choice for calculating 

ground- and excited-state properties of medium to heavy mass nuclei, namely, energy 

density functional (EDF) methods [26]. Fig. 1.3 shows the domains of application of 

the standard nuclear structure methods. 

Figure 1.3: (Color online) The chart of nuclide and the domains of applications of 
the standard nuclear structure method. The black region shows the stable nuclei, 
the green lines show the traditional magic numbers and the red curve delimits the 
experimentally known nuclei. From Ref. [81]. 

Currently, EDFs are completely phenomenological by construction. Modern pa-
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rameterizations of these empirical EDFs such as the Skyrme, Gogny and their rela-

tivistic counterparts provide a fair description of bulk properties and certain spectro-

scopic features of known nuclei [26]. However, such empirical EDFs lack predictive 

power away from the valley of stability or known data. In addition, the objective of 

håving spectroscopic quality EDFs does not seem to be attainable with current energy 

functionals [26]. Consequently, an intense on-going effort is dedicated to empirically 

fitting EDFs possessing more complex analytical forms and/or enriched density de

pendent couplings [[31]-[36]]. 

Along with such phenomenological approach, the quest for predictive EDFs can 

be complemented by constraining the analytical form of the functional and the value 

of the couplings from MBPT and the underlying low-momentum two- and three-

nucleon (NN and NNN) interactions. The present work is a step towards that goal. 

In CHAP. 1, we present a brief discussion of nuclear interaction models with special 

emphasis on chiral EFT. CHAP. 2 introduces the nuclear many-body problem and 

the diagrammatic approaches that rely on summing a selected set of diagrams. This 

is followed by CHAP. 3 where we deal with the formalism and performance of phe

nomenological EDFs. CHAP. 4 lays out the philosophy, goals and limitations of our 

approach for constructing a non-empirical EDF. After introducing the density ma-

trix expansion (DME) as the mathematical technique to make an explicit connection 

between MBPT and quasi-local EDFs, we describe a new formulation of the DME 

based on phase space averaging (PSA). In addition, non-self-consistent and prelim-

inary self-consistent performance tests of this newly formulated DME are given. In 

the subsequent chapter, CHAP. 5, we give details of the derivation of non-empirical 

EDF from a generic NN interaction, at the lowest order in MBPT (Hartree-Fock) and 

the application of the result to the chiral EFT NN interaction at N2LO. CHAP. 6 dis-

cusses the contribution to the non-empirical EDF from chiral EFT NNN interactions 

at N2LO at the HF level. In addition. an on-going effort to build a universal energy 
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density functional (UNEDF) that incorporates the results of this work, as well as pos-

sible extensions and conclusions are discussed in the last chapter, CHAP. 7. Finally, 

all relevant definitions, formulae and derivations. both analytical and symbolic, are 

presented in a set of detailed appendices. 

1.2 Conventions and Notations 

The acronyms, notations and definitions used throughout the thesis are listed below. 

Table 1.1: Acronyms used in this work. 

OBDM 

EDF 

DFT 

NN interaction 

NNN interaction 

HF 

HFB 

INM 

PNM 

EFT 

RG 

DME 

MBPT 

RPA 

One-body density matrix 

Energy density functional 

Density functional theory 

two-nucleon interaction 

three-nucleon interaction 

Hartree-Fock 

Hartree-Fock-Bogoliubov 

Symmetric and unpolarized infinite nuclear matter 

Unpolarized pure neutron matter 

Effective field theory 

Renormalization group 

Density matrix expansion 

Many-body perturbation theory 

Random phase approximation 
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Table 1.2: Definitions and conventions used in this work. 

a/r 

Å 

p?3 

v 

u 

w 

n n 

nT 

VfT 

x 
p/s/J/p/s 

TTP/3/P/S 
i 

aiST\nfnf](R) 

4ST[nfnf}(R) 

Denotes cross product 

Pauli vectors: (ax, ay, az), (TX, TV, TZ) 

Unit vector along vector A, or operator A in case A is an operator 

The differential solid angle with respect to A 

Exchanges the spin coordinates of the ith and j t h particles. 
It is given by i * = 1/2 (1 + Sx • a2) 

Exchanges the iso-spin coordinates of the ith and j t h particles. 
It is given by PT. = 1/2 (1 + n • f2) 

Exchanges the spatial coordinates of the r and j particles :th 

The particle exchange operator given by Py = PT P£ Pi 

The spin singlet (i = 0) and triplet (i — 1) projectors. 
These are given by Uao/i — 1/2 (1 T &i • Ø2) 

The isospin singlet (i = 0) and triplet (i = 1) projectors. 
These are given by TlTo/i = 1/2 (lT^i • T2) 

NN interaction vertex of type I where I can be C-central 
LS-spin orbit or T-tensor and ST can take the values 
10,01,11,00 where the first 1/0 refers to spin 
and the second 1/0 refers to isospin triplet/singlet 

ith"K—function associated with local densities such as 
p{R) / s{R) / J{R)... 

ithir—function associated with non-local densities 
p(ri, f2) I s(f1,f2) I p(n,f2) I s(fi, r2)... 

a[ST[nfnf](R) = 4TT /drr*V?s{r) \nfnf] 

aiST[^nf}(R) = f Jdrr*VP{r) {nfnf] 

aiST[^/s\f](R) = Jdrå£vr(r)[nfnf] 
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Chapter 2 

Nuclear Interactions 

2.1 Historical highlights 

The theory of nuclear forces started in the 1930s when Yukawa introduced the idea 

that the nuclear strong force is carried by a particle with a mass approximately 200 

times that of an electron [37]. Table 2.1 summarizes the major developments of the 

past seven decades in the attempt to derive NN interactions from first principles. 

With the conception of effective field theory (EFT)[9], it has become clear that 

pion-based theories of the fifties, this time with an explicit connection with low-

energy quantum chromodynamics (QCD) [[10]-[12]], should be revived. In the last 

decade, EFT has been applied successfully to the consistent derivation of NN, NNN 

and many-nucleon interactions at various orders in the low-momentum expansion 

scale, Q/h-x, where Q is the energy scale of the low-energy physics and Ax ~ 1 GeV 

refers to the chiral symmetry breaking scale. Details relevant to the present work 

are given in section 2.4. In parallel with these efforts to derive nucleon-nucleon 

and many-nucleon interactions starting from field-theoretic approaches, various high-

precision phenomenological NN and NNN interactions have been parameterized [[16]-

[21]]. These efforts have been guided by requiring the interactions to satisfy a number 
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Table 2.1: Seven Decades of Struggle: The Theory of Nuclear Forces from Ref. [22]. 

1935 

1950's 

1960's 

1970's 

1980's 

1990's 
and beyond 

Yukawa: Meson Theory 

The "Pion Theories" 
One-Pion Exchange: o.k. 

Multi-Pion Exchange: disaster 

Many pions = multi-pion resonances: 
<7, p , W, ... 

The One-Boson-Exchange Model: success 

Refined meson exchange models, including 
sophisticated 2n exchange contributions 

(Stony Brook, Paris, Bonn) 

Nuclear physicists discover 
QCD 

Quark Cluster Models 

Nuclear physicists discover EFT 
Weinberg, van Kolck 

Back to Pion Theory! 
But, constrained by Chiral Symmetry Breaking: success 

of symmetries. In the following, we discuss the symmetries that are used to constrain 

the form of NN interactions. 

2.2 Symmetry Properties of Nuclear Interactions 

While the derivation of the strong NN and many-nucleon interactions is an ongoing 

effort, there are a number of symmetries that a given nucleon-nucleon interaction 

should satisfy. Since one can denote the most general nucleon-nucleon interaction by 

its matrix element between two-body states, we use 

v(l, 2) = (r[o[q[ f^cr^ \v\ naiqi f2cr2g2 } = v{f1kiaiqi, f2k-2a2q2), (2.1) 
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to discuss the action of the various symmetries. In Eq.(2.1), the dependence on the 

momentum of the interacting particles is to allow for nonlocality of the interaction. 

The following are the basic symmetry properties that a given NN interaction needs 

to satisfy [38]. 

• Hermiticity. 

• Invariance under an exchange of coordinates 

v ( l , 2 ) = v ( 2 , l ) , (2.2) 

• Translational invariance 

v (1,2) = v (f, kiaiqi, k2cr2q2), (2.3) 

• Galilean invariance 

v(l, 2) = v(f fc, <Tiqi, a2q2), (2.4) 

• Invariance under space reflection 

v(fk, engi, ø-2g2) = v(-f - k, a-i gi, cr2g2), (2.5) 

• Time reversal invariance 

v(fk, engi, cr2g2) = v (f - k, -aiqi, -o2q2), (2.6) 

• Rotational invariance in coordinate space implies that the interaction is a scalar. 

Additionally, 
—* —* 

v(fk, aigi , cr2g2) = v(-f - k, a2q2, aiq2) , (2.7) 
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which is due to Eqs. (2.2) and (2.5). Hence, terms in the interaction which are 

linear in o^ and qt depend only on er = (<7i + a2)/2 and q = (c/i + c/2)/2. 

• Rotational invariance in isospin space which is an approximate symmetry broken 

by the coulomb interaction and other isospin-breaking effects. If assumed to 

hold, then 

v(fk, CTIC/X, a2q2) = v0(fk, cr2, ai) + vi(fk, <r2, a\)n • T2 . (2.8) 

Even after correcting for electromagnetic effects, there is a strong experimental evi-

dence that the nucleon-nucleon interaction breaks charge symmetry [39] and charge 

independence [[40], [41]]. The experimental evidence comes from the difference in the 

scattering lengths of pp, nn and pn systems. These values read app = —17.3 ± 0.4fm, 

ann = —18.8 ± 0.5fm and apn = —23.74 ± 0.02fm. In general, nucleon-nucleon in-

teractions can be classified into four classes according allowed isospin operators [42], 

i.e. 

• Class I forces have only dependencies on [1, (n • T2)], and do not break either 

charge symmetry or independence, 

• Class II forces maintain charge symmetry but are charge-independence-breaking 

(CIB). They are characterized by the isotensor T12 defined by analogy to the 

usual tensor Si2 given in Eq. (2.10), and vanish for Tz = ±1 (nn or pp) systems, 

• Class III forces are both charge-symmetry-breaking (CSB) and CIB, but remain 

invariant under the exchange of the two nucleons, and are thus proportional to 

(TZI + TZ2). They do not cause isospin mixing since Tz commutes with T2, and 

vanish for Tz — 0 (np) systems, 

• Class IV forces are both CSB and CIB, and are antisymmetric under the ex-
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change of the two nucleons, which causes isospin mixing. They are proportional 

to (r2l — TZ2) or (ri <g> T2)Z , and vanish for Tz = ±1 systems. 

The most general class-I two-body potential invariant under the fundamental sym-

metries recalled above can be decoupled into [43] 

/ \ \ 
1 

(<Tl • 02) 

S\2,r 

(L-S) 

Q12 

^12,k 

) 

) 

/ 

1 

\ (ri • r2) 

"(1,2) = £>„(>•) 

V 

where the various operators are the so-called central 1, tensor Si2,f , spin-orbit (L-S), 

quadratic spin-orbit Q12l and 512 £ components. The operators Si2,r, S12 £ and Qi2 

are given by 

Sl2,f 

^12,k 

Q12 

= -2(01 • r)(<72 • r) - Øi • 02, 

3 - -* 
= p(o"i • k)(a2 • k) -ai -a2, 

= h(a1-L)(a2-L) + (a2-L)(al-L)} 

(2.9) 

(2.10) 

(2.11) 

where all operators in (2.2) have radial prefactors, vp(r), that can be constrained from 

microscopy or experimental data. 
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2.3 Remarks on high-Precision Phenomenological 

Models 

The construction of phenomenological models for nucleon-nucleon interactions pro-

ceeds by parameterizing the radial prefactors vp(r). It is well known that the long-

range (r > l/ra,,-) part of the interaction is given by one-pion exchange, thereby 

fixing the radial form factor to the usual Yukawa form, -—^—. The phenomenolog

ical models that have been parameterized in the last two decades [[16]-[21]] are said 

to be high-precision as they are able to fit low-energy (< 350MeV) nucleon-nucleon 

scattering data with a chi square per degree of freedom, xV-^data, close to one. Ad-

ditionally, all currently available high-precision phenomenological models are charge 

dependent (CIB and CSB) and use about 40-50 parameters. The main difference 

among the various phenomenological models lies in the way they attempt to capture 

the intermediate- and short-range parts of the interaction. 

The need to include many-body forces has been suggested by discrepancies be-

tween low-energy properties computed with two-body forces only and experimental 

data, such as differential nucleon-deuteron cross-sections [[44]-[46]], triton and other 

light nuclei binding energies [47], and the violation of the Koltun sum rule [48]. For 

instance, the binding energies of 3H versus 4He computed with all available NN models 

align on a so-called Tjon line that excludes the experimental point [8]. This is seen as 

a necessity to use consistent NNN forces to sneak away from this Tjon line. Likewise, 

the Coester line on which lies the saturation point of INM computed with NN forces 

only [[l]-[7]], is another indication that NNN forces are essential to reproduce bulk 

properties of nuclear matter[[49], [50]]. 

Phenomenological NNN potentials are available [[51]-[54]], based on mesons ex-

changes plus empirical short-range components. Using the same philosophy as phe

nomenological NN forces, they are adjusted on binding energies and scattering observ-
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ables of three- (and four-) body systems such as proton/nucleon-deuteron diffusion 

data [[55]-[57]]. In the following section, it will be seen that chiral EFT, NNN inter-

actions appear naturally which is one of the main advantages of the EFT approach. 

2.4 Chiral EFT Models 

Potentials based on chiral EFT [9] exploit the separation of scales between the chiral 

symmetry-breaking scale, Ax PS 1 GeV. and typical momenta of low-energy processes 

at play in the nuclear structure context, Q1 usually about m% æ 140MeV [[10]-[12]]. 

In that respect, few-nucleon processes can be treated using only nucleons and pions 

as degrees of freedom, the ir—N interaction being governed by the spontaneously 

broken chiral symmetry of QCD. All other heavy mesons and nucleon resonances are 

integrated out of the theory, and their effects are contained inside scale-dependent 

couplings. The effective Lagrangian only depends, in this approximation, on a finite 

number of low-energy constants (LECs), and can be classified using a systematic 

expansion based on a power counting in terms of (Q/Ax)", where v is called the 

chiral order. At a given accuracy (Q/AXY, only a finite number of terms in the 

Lagrangian are needed in the low-momentum regime. 

The leading order interaction corresponding to v = 0 is denoted by LO. There is 

no contribution for v = 1, and following terms v > 1 are called (next-to-)1'-1 leading-

orders (Nt/_1LO). This framework includes effects beyond the NN force, since three-, 

four-... body interactions appear naturally in the perturbative expansion, and the 

hierarchy V^N ^> UATJVJV 3> V^NNN is a direct consequence of the power counting, as 

shown in Fig. 2.1. 

At this point, chiral interactions exist up to N3LO [[58],[59]], where most of the 

NN and one-pion, two-pion and three-pion (OPE/2PE/3PE) diagrams have been 

computed using various approaches [58, 59]. Improvements of such approaches may 
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consist in (i) increasing the chiral order v of the perturbative expansion, although 

power counting implies that higher contributions will be substantially smaller, as al-

ready observed in the case of OPE/2PE [62], (ii) the introduction of four-nucleon 

forces arising naturally at N3LO [63], (iii) treating extra degrees of freedom explic-

itly, such as nucleon A excitations that play a role in three-body forces [[66],[68]] and 

isospin breaking NN forces [68], or (iv) refining the short range phenomenological 

cutoff schemes. Finally, since chiral perturbation theory is a low-momentum expan

sion, its predictions are by essence only valid for momenta Q <C Ax. Several families 

of chiral forces are defined depending on the values of the intrinsic high-momentum 

cutoff up to which they are defined, whose values typically range between 450 and 

750 Me Vs. This makes chiral potentials significantly softer than phenomenological 

hard-core interactions. In general, chiral EFT potentials have the general structure 

VEFT = V ^ + V^A), (2.12) 

where Vn7t are due to n pion-exchanges and V^(A) refers to the contact parts which 

depend on the high-momentum cutoff scale, A. 

In chapter 6 and 7, we calculate the HF energy from chiral EFT NN and NNN 

interactions at N2LO, with emphasis on the contribution from the finite-range parts 

of the interaction Vn7r. Hence, we now describe the chiral EFT interaction at N2LO 

in some detail. 

2.4.1 NN part at N2LO 

At N2LO in the low-momentum expansion Q, the pion-exchange (finite-range) part 

of the NN interaction can be written as 

T/ _ T / ( 0 ) -I- V{2) -L I / ( 3 ) 
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NN diagrams NNN diagrams 

N2LO (f = 3) 

Nucleon line 

jr line 

• £*°VA = 0 tenn (no field derivatives) 

I £ (1)/A = l tenn (one field derivatives) 

• £i2'>/A = 2 tenn (two field derivatives) 

Figure 2.1: Hierarchy of nuclear forces from Chiral Perturbation Theory, classified 
according to a power counting (Q/Ax)

u, and restricted to v < 3 for simplicity. 
Three-body forces appears at next-to-next-to-leading order (N2LO), but some of the 
associated low-energy constants are already constrained by the two-body domain 
(black symbols) while others (gray symbols) are to be adjusted on three-body 
observables. From ref. [81]. 
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V*, = Vg> + Vg>, (2.13) 

Here the superscripts denote the corresponding chiral order and the ellipses refer to 

the Q4-and higher order terms which are not considered in the present work. As 

can be seen, contributions due to the exchange of three-and more pions are further 

suppressed. In \k) <g> \a) <S> \T) space, the finite-range (pion-exchange) part of the chiral 

NN interaction through N2LO takes the form1 

{k{ki \V\ hk2 ) - ( [Vc(q) + n-T2 Wc(q)} + [ Vs(q) + n • f2 Ws(q) \ax-a2 

+ [ VT(q) + n-T2 WT(q) ]a1-qa2-q + - [VLS{q) 

+ n-T2 WLS(q)] (a, + a2) • (q x k") \ å(K - K') , (2.14) 

where q — k' — k is the momentum transfer, with the relative momenta being k = 

fci - k2 and k' = k[ - k2. K = (kx + k2)/2 and K' = (k[ + fc2')/2 are center 

of mass momenta of incoming and outgoing interacting particles respectively. The 

requirement of Galilean invariance is enforced by 5{K — K'). In passing, we remark 

that the the contact part of the interaction contains terms that depend on p — 

(k1 + k)/2 and/or q. The subscripts C, S, T, LS label the form factors of central, spin-

spin, tensor and spin-orbit components of the interaction. The form factors are scalar 

functions of the momentum transfer q and are such that (i) only WT gets contribution 

from one pion-exchange (ii) Ve, , Wc, , VT , WT , VL$ , WLs get contribution from two-

pion exchange. Actual expressions and details on the contact parts of the interaction 

are given in Ref. [59]. 

lrThe finite-range NN spin-orbit piece is actually zerorange up to N2LO. 
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2.4.2 NNN part at N2LO 

From a general standpoint, three-body forces can be characterized by 

{kik2fa\V3N\kikfy) = jph1+k2+k3,-q-q-^zN(kik2h\k{k2kl)i (2-!5) 

where 0 is the volume used in the box-normalization of the momentum basis states, 

% +k +fe -k'~k'-k' m ^n e Kronecker delta and V (ki^k^klk^k^) is a matrix element 

in momentum space and an operator in spin-isospin space whose dependence on spin 

and isospin degrees of freedom is not displayed. The NNN \~EFT interaction first 

appears at N2LO where it is composed of three components [69] (i) the E-term (ii) 

the D-term and (iii) the C-term. 

The E-term 

The E-term, which is a three-nucleon contact interaction, is the simplest part of the 

X-EFT 3NF at N2LO. Its expression reads 

%(kS2Hk[k'2%) = £ ( n • f2 + f2 • f3 + f3 • n ) , (2.16) 

where B = fe" {2A7) 

The D-term 

The D-term involves one-pion exchange plus contact interaction. Its analytical reads 

f> (T T T \t'T'ti\ - 9A CD ( eti- q2 cr2 • q2 o2 • ql a3 • q3 

, (Ti • gi o-i • gi \ 
+

 9 ; + m ; T3-T>)' ( 2 ' 1 8 ) 

19 



where fø = ki — k(. 

The C-term 

The C-term of the interaction involves two-pion exchange. Its analytic form reads 

VcikikzhlKHH) = 
9 A \ ( V\-qi<72- 92 Fq/3 a 0 

2/J W.+rnlM + mlf^^ 
a2 • g2 03 • 93 rpa/3 a P 

+ (4 + r^M + mi)^^) ' (2-19) 

with 

KU = ^ [ - 4 ^ + 2 f2qz • qj] + f2e°^k ak • (gl x q3). (2.20) 
J-K J TT J17 

Low energy constants and parameters of the N N N interaction at N2LO 

Values of the various coupling constants appearing in Eqs.(2.16)-(2.20) can be found in 

Table 2.2. There are several ways to extract fix the CD and CE low-energy constants, 

one of which is adjusting these constants such that the binding energies of 3H and 

4He from ab-initio calculations with NN and NNN interactions match experimental 

values. The above statements also hold for c\. On the other hand, there is still some 

controversy over which set of values is "right" for c3 and c4 with extractions from 7r—N 

scattering and NN begin different with large uncertainties. Resolving these differences 

is important as many quantities are sensitive to the values of C3 and C4 [60]. 
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Table 2.2: Parameters for chiral EFT NNN interaction at N2LO, with 
Ax = 700 [MeV]. Note that the values for C3 and c4 are from Ref. [61]. 

9A 1.29 

/„. [MeV] 92.400 

mn [MeV] 138.040 

ei [ Ge V"1] -0.760 

c3 [ GeV-1] -4.780 

c4 [ GeV"1] 3.960 

CD -2.062 

E -0.625 
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Chapter 3 

The Nuclear Many-Body Problem 

3.1 Remark on ab-initio/MBPT-based methods 

Ab-initio methods for the nuclear many-body problem such as no-core shell model 

(NCSM) solve the A-body problem in a given model space while quantum Monte-

Carlo methods such as Green's function Monte-Carlo (GFMC) rely on stochastic 

integration of the many-body Schrodinger equation [23]. Currently, they are able to 

incorporate both NN and NNN interactions. However such methods show exponen-

tial scaling with A, thus limiting their applicability to only A < 12 [23] due to their 

computation costs. In this regard, CC (coupled-cluster), IT-NCSM (importance-

truncated no-core shell model) and IT-CI (importance-truncated configuration inter-

action) should be mentioned as ab-initio methods that solve the A-body problem 

approximately in the given model space. They have lower computational complexity 

and thus extend the applicability of ab-initio methods to heavier nuclei [24, 25]. 

In contrast, MBPT-based methods rely on partial finite/infinite-order summation 

of MBPT diagrams according to some organizing principle. Infinite-order summation 

may be necessitated by the non-perturbativeness of the starting interaction, and may 

not be necessary if one starts from perturbative low-momentum interactions [27]. The 
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non-perturbative behavior of conventional phenomenological interaction models can 

be traced to [27] i.e. (i) the hard-core repulsion that makes nucleons scatter up to 

very high energies and requires large basis sets, (ii) the tensor force coming from OPE 

which is singular at short distances, and (iii) the presence or virtual (di-neutron) or 

bound (deuteron) states. 

On the other hand, vacuum nuclear interactions are strongly renormalized in the 

nuclear medium. This suggests that expressing the many-body energy in terms of 

an unperturbed Slater determinant coupled to an effective in-medium interac

tion that already includes many-body correlations might be possible. That is, the 

minimal set of in-medium correlations that have to be included to reach a reasonable 

description of the system, i.e. infinite nuclear matter or finite nuclei, need to be in

corporated in the definition of the in-medium interaction. This can be achieved for 

simple systems in the context of Goldstone-Brueckner theory [70]. 

3.2 Goldstone-Brueckner formalism 

As long as pairing is not explicitly included, the Hamiltonian H — t + v can be 

decomposed in terms of a one-body hamiltonian h0 that has Slater determinants |$j) 

as eigenstates, and a perturbation hi, i.e. 

H = ho + hu (3.1) 

h0 = t + T = 1^2U + ^2^ijoiåj = Y^^ncllcn, (3.2) 
i ij n 

hi = v-F. (3.3) 

The quantities ep are the eigenenergies of h0 corresponding to single-particle states ipp, 

whereas Ei will denote many-body eigenenergies of ho associated with unperturbed 
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Slater determinants, i.e. 

P=I 
i**>=nd°>- (3.4) 

According to Gell-Mann-Low's adiabatic theorem [71], the true ground state |Øo) 

of H can be obtained from the adiabatic evolution of the ground state of h0 from 

t = —oo to t = 0 by gradually turning on the residual interaction [72], i.e. 

|9o) = lime_>0 
U((0,-oc)\%) 

($0|E/£(0,-oo)|$o) 
(3.5) 

where the adiabatic evolution operator Ue(t, to) from t to to is defined in the interaction 

representation starting from the Hamiltonian in the Shrodinger representation H(e, t— 

t0) as 

U(t,t0) = 

Ue(t,t0) = 

= exp 

= exp 

i hot 

h 

~hJi 

Ue(t,t0) exp 

rH{e,T) 
0 

ih0t 
h 

(3.6) 

(3.7) 

From an expansion of Ue in powers of the residual interaction and integrations over 

time in Eq. (3.5), a series expansion of the ground state |©o) is obtained [73], i.e. 

l®o> = E £o — ho 
hi) |$o) linked (3.8) 

where the sum runs only over linked diagrams, i.e. where |$0) does not appear as 

an intermediate state. The latter is enforced at the level of (3.5) where the denomi-

nator fixes the normalization of |00) by eliminating disconnected vacuum-to-vacuum 
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diagrams [79]. Likewise, a similar expansion of the ground-state energy E0 reads 

E0 = ^0 + y V * o | / * l ( 7-hl ) |$o)co.mected , (3 .9 ) 

„ \£o -ho ) 

where the sums now only runs over connected diagrams. 

However, if the expansions of Eqs. (3.8) and (3.9) are truncated at a given order, 

non-converging results arise if the vacuum interaction contains a non-perturbative 

hard core. On the other hand, it is possible to extract a series of ladder diagrams where 

a succession of interactions v scatters nucleons into particle states. This series can 

be replaced by a reaction matrix G which resums those Brueckners particle-particle 

ladders and can be represented by the self-consistent Bethe-Goldstone equation [[75]-

[78]] 

G(u>) = v + v —^-r G(u), (3.10) 
U) — flg 

where co is the starting energy that corresponds to the in-medium energy of the 

nucleons at the location where G is inserted, whereas the Pauli operator Q excludes 

occupied states, i.e. those below the Fermi level e^ associated with the unperturbed 

vacuum \$o), that is 

Q= Y, \PP')(PP'\- (3-u) 

£P'epf>eF 

The replacement of the initial interaction by the re-summed G-matrix modifies the 

short-range part of the in-medium two-body wave function, such that it is strongly 

suppressed over a distance of the order of the range of the repulsive core, that is the 

healing distance, or wound [70]. 
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3.2.1 Expansion of the ground-state wave-function and en

ergy 

The general idea consists in regrouping, if necessary, dusters of diagrams under G in 

such a way that a converging series is obtained, i.e. a truncation at a given order 

provides a result of a given precision [74]. Onee the G-raatrix has been computed, it 

replaces all instances of v in diagrams, excluding those where successive G-matrices 

are connected by a two-particle intermediate state, that is no particle-particle ladder 

connecting two G-matrices must be written. 

Hole-line expansion for non-perturbative potentials 

While the G-matrix regularizes the hard-core repulsion, an expansion in terms of G 

for the ground-state and single-particle energies remains non-perturbative, in such 

a way that the proper expansion parameter is the number of hole lines [80]. At 

lowest order in the hole-line expansion, the ground-state energy E is given by the 

Bruckener-Hartree-Fock (BHF) approximation. The BHF approximation consists of 

a self-consistent solution of the equations 

E0 « (ij\ G(u) I ij) 

where e* are the on-shell single-particle energies that are obtained by a functional 

derivative of the ground-state energy and the two-body matrix elements of G(u) and v 

are anti-symmetrized. Thus, the lowest order in hole lines for E0 (two hole lines) leads 

not only to a term with one line in the seif energy but also to a rearrangement term 

containing two hole lines and coming from the functional derivative of the particle-

particle ladder propagator. 
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Perturbative expansion 

If the starting interaction is in fact perturbative, as it will be the case for low-

momentura interaetions, in-medium corrclations can be treated through converging 

perturbative series in powers of v for Eo and ti. Indeed, the ladder series from (3.10) 

becomes perturbative, such that it can be truncated at a given order in intermediate 

ladders. For instance, the ladder series for vi^-k is almost converged at second order 

in MBPT [81]. For the relevant diagrams that appear at second order from NN and 

NNN interaetions, refer to Table 5.1 in section 5.1.1. 

3.2.2 Choice of the one-body potential T 

The proper choice of the unperturbed hamiltonian /i0 is crucial to have a rapidly 

convergent series [82]. Several choices for the one-body field Y are possible, among 

which (i) a phenomenological expression that is fixed a priori, (ii) the Hartree-Fock 

approximation where ek are eigenenergies of the Schrodinger equation associated with 

the vacuum force, or (iii) a more involved approach necessary for non-perturbative 

potentials, e.g. where the one-body field F is constructed at lowest order in the on-

shell G-matrix or includes rearrangement terms (extended Brueckner-Hartree-Fock 

calculations) [[83]-[86]]. 

Note that the truncation orders can be different in the series for the energy E0 

and the self-energy e,, e.g. Eo can be computed at second order while single-particle 

energies are derived from a more simple (Woods-Saxon...) potential or only at first 

order in v. Still, adding more orders in the expansion of the single-particle energies 

adds extra diagrams in the series for E0 such that it converges faster. Finally we 

remark that description of pairing within a diagrammatic framework is possible by 

defining anomalous propagators and allowing for anomalous contractions in addition 
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to the normal contractions. Refer to [87] for details. 
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Chapter 4 

Phenomenological Energy Density 

Functionals 

4.1 Phenomenological Nuclear Energy Density 

Functionals 

The nuclear energy density functional (EDF) approach, due to its computational 

tractability, is the many-body method of ehoice to study medium- and heavy-mass 

nuclei in a systematic manner [26]. The central element of EDF approach is the 

energy density functional. Currently available realizations of the EDF approach, all 

empirically constructed, vary in the way they parameterize this energy density func

tional [26]. These include the quasi-local Skyrme, the nonlocal Gogny and relativistic 

models. 

4.1.1 Motivation from density functional theory 

Historically, nuclear EDF based approaches were motivated by starting from effec-

tive interactions in the particle-hole and particle-particle channels and solving the 
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self-consistent mean-field equations [26]. Recently, the focus has shifted towards 

considering the energy density functional approach as motivated from effective field 

theory where the various densities of the system are the basic low-energy degrees of 

freedom [35]. 

In parallel, the development of density functional theory (DFT) [[88]-[91]] in quan

tum chemistry and condensed matter physics seems to have given nuclear energy den

sity functional approaches a starting theoretical basis. DFT has been applied success-

fully to the structure of quantum many-body electronic systems (atoms, molecules, 

solids...). The comparatively small computational cost of the approach makes DFT 

the only feasible solution for systems with large number of electrons [92]. Instead of 

the many-body wave-function, DFT takes the fermion density as the "fundamental" 

variable. 

The two building blocks of DFT are 

• The Hohenberg-Kohn theorem [95], which states the existence of a functional 

F[p] such that the ground-state energy of a system of N particles in a one-body 

external potential u(r) can be written as 

Eu[p) = F[p] + J dru(r)p(r), (4.1) 

where F[p] only depends on the Hamiltonian of the interacting system, thus 

is independent of the external potential u(r). The ground- state density po{r) 

and energy E0 = Eu[po] are then obtained by minimizing Eu[p] with respect 

to a variation of the density p(f) under the constraints that p is positive and 

/ dfp(f) = N. It should be noted that this existence theorem does not imply 

that all the information about the ground state is contained in the electron 

density p(r) [93]. 

• Due to its practical difficulties, DFT is not implemented as a pure functional 
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of the density, a la Thomas-Fermi theory [94]. Rather, one makes use of the 

Kohn-Sham implementation [97], which asserts that for any interacting system, 

there exists a unique local single-particle potential UKS^ such that the ground-

state density of the interacting system equals the ground-state density of the 

auxiliary non-interacting system in the external potential uKs(r), that is 

N 

Pir) = pKs(r) = Y^ 
i = l 

&(*=) (4.2) 

expressed using the lowest N single-particle orbitals, <fø(f), which are solutions 

of the one-body Kohn-Sham equation 

2 

- h uKS\f) 
2ra 

i(f) = €i<j>i(r), (4.3) 

where e, are the Kohn-Sham eigenvalues. 

In the Kohn-Sham scheme, F is split into 

F[p] = T[p] + U[p] + Exc[p], (4.4) 

where (i) T[p] is the universal (kinetic) energy functional of the non-interacting sys

tem, (ii) U[p] is the Hartree functional depending on the two-body interaction po

tential V(\fi — fj\), and (iii) Exc[p] is the so-called exchange-correlation functional, 

including the Fock term and all remaining many-body correlations. When Exc[p] is ne-

glected, the Kohn-Sham equations reduce to the standard self-consistent Hartree ones. 

Additionally, the Kohn-Sham potential is given through the condition that ground-

state energies of the interacting and non-interacting problem (U[p\ = Exc[p] — 0) are 

met for the same density p(f), i.e. 

uKS(f)^u(r-) +
 5-f^. (4.5) 
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While the Kohn-Sham potential is local/multiplicative, the exchange-correlation func-

tional might be highly non-local. The main difficulty for DFT practitioners lies in 

the fact that no prescription is given to construct F[p], i.e. the universal exchange-

correlation part Exc[p]. Several levels of realization exist to construct 

Exc[p] = I drexc(r), (4.6) 

and they correspond to adding more complex dependencies in the functional Exc[p\. 

The standard classification separates, from the most simple to the most involved level 

of description [89]: 

• The local density approximation (LDA), where Exc[p] only depends on the local 

density, p(r) and is matched onto the energy per unit volume of the correspond-

ing infmite homogenous system, 

• The generalized gradient approximation (GGA), where additional specific de

pendencies on the gradient Vp(r) are added to Exc[p\, 

• The meta-GGA, which introduces as an additional degree of freedom the kinetic 

energy density of occupied Kohn-Sham orbitals 

•w = E V<Mr) 
2 

(4.7) 

• The hyper-GGA, which takes also into account dependencies of Exc[p] on single-

particle energies Cj and occupations pt, 

• The generalized random phase approximation (RPA) which involves unoccupied 

Kohn-Sham orbitals, and can be seen as the ultimate goal in terms of global 

accuracy. 
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However, in spite of several recent developments, a rigorous connection between 

nuclear EDF and DFT approaches is yet to be found [[98]-[103]]. The key aspect of 

this problem is the fact that unlike the systems that are studied in condensed matter 

physics and quantum chemistry (bound by external potentials), the nuclear many-

body problem involves a self-bound system. In contrast to the standard Hohenberg-

Kohn theorem which is symmetry-conserving, the nuclear Kohn-Sham potential im-

plementation of EDF approaches breaks symmetries of the Hamiltonian such as trans-

lational and rotational symmetries. Even though projection techniques can be used 

to restore these symmetries, understanding its implications for DFT requires further 

theoretical development. Additionally, the presence of both spin and isospin degrees 

of freedom and the importance of pairing correlations need to be considered in nuclear 

EDF approaches. For a related formulation of pairing within the DFT framework, 

refer to Ref. [104] although the formulation corresponds to a system coupled to a 

particle reservoir. 

4.1.2 Single- and multi-reference EDF formulations 

As mentioned in section 1.1, the fact that nuclei are self-bound fermionic systems 

with both collective modes and individual excitations existing on the same energy 

scale make the nuclear many-body problem a complex one. In order to handle this 

problem, nuclear EDFs incorporate the assumption that these correlations can be 

divided into two different classes that can be incorporated in two different steps (i) 

short-range in-medium correlations which are recovered at the level of single-reference 

energy density functional (SR-EDF) calculations and commonly referred to as mean-

field calculations (ii) long-range correlations that originate from collective modes and 

symmetry restoration. These are handled by multi-reference energy density functional 

(MR-EDF) calculations. 

In SR-EDF calculations, the EDF is a functional of the normal, pij, and anoma-
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lous, Kij, parts of the OBDM defined in appendix 9.2.2 and 9.2.5. In general, the 

energy density in SR-EDF is given by [105] 

tii Pji + g Yl VW A* PU + 4 E VW K*ik % 
ijkl ijkl 

1 1 
\ "* ppp * , X \ "* pKK * 

^ 2_^ Vijklmn Pli Pmj Pnk + ^ ^ Vijklrnn Pli Kjk Krnn ? 

(4.8) 
ijklmn ijklmn 

where v denotes the efFective interaction in the respective channel. Traditionally. SR-

EDF calculations have been referred to as self-consistent mean-field theory where one 

starts from an effective two- and three-body interaction and calculates the Hartree-

Fock (HF) or Hartree-Fock-Bogoliubov (HFB) energy density. However, SR-EDF 

calculations are distinctly different from mean-field calculations in that specific prop

erties of the interaction vertices, e.g. v f fy = vffy are not satisfied [105]. 

SR-EDF calculations can reproduce static collective correlations such as pairing 

and deformation through the symmetry breaking of the auxiliary state |$0) with 

respect to which the OBDM is defined. This does not hold for collective modes and 

dynamical correlations, which require Multi-Reference (MR) calculations. Motivating 

from Hamiltonian-based generator coordinate method (GCM) calculations [105], MR-

EDF is formulated as 

c _Eo,UMRfofl£MR[*0,*l]($o\*l) , . n . 
MR = v f* f /a> \*> \ ' *• ^ 

where £MR[$Q, $1] is the MR-EDF and the weight functions /o, f\ are determined 

by symmetry consideration and/or diagonalization. If one follows the Hamiltonian 

formalism, the most natural guidance for the construction of £MR[®O, $1] is pro-

vided by the generalized Wick theorem (GWT) [105] which asserts that one obtains 
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£MR[&O,$I) by replacing the SR density matrices by transition densities [105]. Nev-

ertheless, the application of this prescription to currently available EDFs encounters 

several pathologies which have been traced to the occurrence of non-integer pow-

ers of the density matrix in the functional. One proposed solution [105] is the re-

parameterization of EDFs in terms of only integer-powers of the density matrix. 

4.2 Skyr me energy density functionals 

In the Skyrme-EDF model [26, 106], the energy density functional £ is given as the 

sum of kinetic, particle-hole, particle-particle (pairing), Coulomb and center-of-mass 

correction terms, i.e. 

£ [p, K, «*] = £kin. [p] + £ph [p] + £pp[p, K, «*] + £Coul. [p] + ^c.o.m. [p] • (4-10) 

£ is quasi-local and is expressed as the single integral in coordinate space of a local 

energy density. The expressions for £kin., £coui.i a n ( l £c.o.m. c a n be found in the lit-

erature [26]. They are also discussed in section 6.1.4 in relation to the application 

of the density matrix expansion [[107],[170]] to the HF energy from a generic NN 

interaction. 

4.2.1 Particle-hole functional 

The particle-hole part of the Skyrme-EDF resembles meta-GGA functionals in a DFT 

context as it uses explicit dependencies on several local densities and currents, includ-

ing spin-orbit densities. This is crucial for the proper treatment of finite nuclei. The 

functional is the most general bilinear combination of all local densities, built from 

the density matrix up to second order derivatives, in such a way that £ remains 

invariant under the transformations associated with all symmetries of the nuclear 
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Hamiltonian, i.e. parity, time-reversal, rotation, translation, gauge and isospin trans-

formations [126]. The functional reads 

£ph[p] =£skyrme[p] 

= Y^ fdrApp pq pq + ApAp pqApq + A^ (pqrq - j q • jA 

+ Ass sq • s q + AsAs sq • Asq + ApvJ (pqV -Jq + jq-Vxsq) 

+ AVsVs (V • sq)(V • sq) +AJJ(JT JUl^ - &q • fqq) 

+AJJ[{ E JI») (E ju)+E vi, -^-p\ 

+ E ldrBPP PqP9' + BPA" P"&Pq' + Bpr (pq^ ~ Jq • Jq') 

+ Bss sq • sq' + BsAs sq • Asq' + BpvJ (pqV • J« ' + j « - V x sq') 

+ B™° (V • sq)(V • sq') + BJJ ( £ JUi - sq • fq') 

+ 5JJ[(EJ^)(EJi)+EJ^-2^-F"']; (4.11) 
\IV 

where the coupling constants Ax/Bx refer to the interaction between particles with 

identical/different isospins, respectively. The densities that occur in Eq. (4.11) are 

given in appendix 9.2.3. The coupling constants Ax jBx may further depend on 

densities that do not involve spatial derivatives. Historically, Eq. (4.11) was derived 

starting from the HF expectation value of a Skyrme interaction [108] which contains 

zero-range terms plus gradient corrections to encode finite-range effects, and is a sum 

of central, spin-orbit and tensor terms, i.e. 

^Skyrme(Æ, f) = ZW.(-R, f) + VLS(R, f) + Vtem.(R, f ) (4.12) 
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vceat(R,r) = to(l + xoP<r)S(f) + -t3{l + x3Pa) 
D 

+^tl{l+xlPa)[kn8{r) + 8{f)%2]+t2{l + x2Pa)i'-8{r)% 

+P1{?)6(r) (4.13) 

VLs(r) = iW0Øi+ff2)-k'xå(f)^ (4.14) 

W (f) = l-te { [3 {ar • k') (a2 • k') - (a, • a2) k'2} 6 (f) 

+ S(f) [3 (ax • k) (a2 • k) - (ai • a2) k2]} 

+ta 3 (ai • k') 5{r) (a2 • k) - (ai • a2) A' • 8(f) fc] . (4.15) 

In this context of viewing Sph[p] as the HF energy from a zero-range Skyrme 

force, the time-even and time-odd terms of the coupling constants of the Skyrme 

energy functional are related through the underlying parameters of the Skyrme inter-

action [106]. However, in the general EDF formulation, the time-even and time-odd 

couplings are independent of each other, aside from relations dictated by local gauge 

invariance. Even though this most general second-order particle-hole functional has 

been known for quite some time, traditional studies concentrated only on those terms 

which were deemed most important. Recently, the impact of all couplings is being 

analyzed in various studies [[26], [159], [158]]. 

4.2.2 Particle-particle functional 

Neutron-neutron and proton-proton pairing acts mostly in the spin-singlet channel 

S — 0 of the nuclear interaction, as shown by the properties of the bare NN force [117]. 

At the same time, it occurs mainly in the s wave, that is a local pairing functional. 

This is usually used to justify the expression of the particle-particle functional £pp as 

£pp[p, K, «*] = / drA& Y, ^ > (416) 
J i 
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where usually 

APP = to 
1 - 7 / 

PO 

Psat 
(4.17) 

The latter expression derives from a deiisity-dependent delta interaction (DDDI) [127, 

128, 129, 130, 131] 

v^(f,R)=v^(R)S(f) = i0 
l -Pa 

1 - 7 7 
MR) 

Psat 
S(r). (4.18) 

It is bilinear in the pair density pq, defined in Eq. (9.99), whereas the strength to 

is tåken to be the same for neutron-neutron and proton-proton pairing. Spp[p. p, p*] 

enforces pairing correlations only in the T = 1 channel, as proton-neutron pairing 

is usually neglected. The introduction of T = 0 pairing requires a more involved 

formalism, since pairing correlations can now couple between superblocks of different 

signature in the HFB equations [118, 119]. Two parameters r\ and a control the spatial 

dependence of the coupling constant through the overall isoscalar density-dependent 

coupling. A zero value of r\ corresponds to a pairing strength that is uniform over 

the nuclear volume ("volume pairing") while r\ — 1 corresponds to pairing strength 

which is stronger in the vicinity of the nuclear surface ("surface pairing"). A value 

77 = 1/2 corresponds to an intermediate situation ("mixed-type pairing"). Values 

a < 1 correspond to stronger pairing correlations at low density. 

4.2.3 Self-consistent solution 

After the construction of the densities pij and Kij from an auxiliary |$), the variation 

of the EDF (Skyrme-EDF) with respect to these densities results in Hartree-Fock 

Bogoliubov (HFB) equations. Refer to appendix 9.7 for a brief discussions of these 

equations. One solves these equations self-consistently. For detailed discussion on 

this, refer to Ref. [81]. 
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SLy4 
SUI 
m*l 

Psat 

C? Psat 

O3 
Psat 

T6 
SKa 

T21-T26 

psat [fm-a] Koe [MeV] (m*/m)s KV E/A [MeVj 
0.160 229.9 0.70 0.25 -15.97 
0.145 355.4 0.76 0.53 -15.85 
0.162 230.0 1.00 0.25 -16.07 
0.145 230.0 0.70 0.25 -15.69 
0.160 230.0 0.70 0.25 -15.99 
0.175 230.0 0.70 0.25 -16.22 
0.161 235.6 1.00 0.00 -15.93 
0.155 263.1 0.61 0.94 -15.99 
0.161 230.0 0.70 0.25 -16.00 

Ref. 
[135, 145] 

[146] 
[144] 
[144] 
[144] 
[144] 
[147] 
[148] 
[142] 

Table 4.1: INM properties of Skyrme functionals (from Ref. [81]): saturation 
density psa t, bulk compressibility K^, isoscalar effective mass (m*/m)s, 
Thomas-Reiche-Kuhn enhancement factor KV and energy per particle at saturation 
E/A. 

4.2.4 Existing parameterizations 

About 150 parameterizations of the Skyrme EDF have been defined so far and ad-

justed for various purposes (see [120] and references therein for the most common 

parameterizations). Sample parameterizations and associated properties of INM are 

shown in Table 4.1. These functionals differ in what quantities were emphasized dur

ing the fits. For instance, T6 has an isoscalar effective nucleon mass (m*/m)s = 1, 

providing a denser single-particle spectrum, while SKa has a different isoscalar effec

tive mass, but also a different density dependence (density-dependent term with an 

exponent of 7 = 1/3 instead of 7 = 1/6). T21 to T26 incorporate tensor terms that 

differ by their neutron-neutron couplings [142]. 

4.2.5 Predictive power of empirical EDFs 

The discussions in the previous several sections were for the Skyrme EDF. Even 

though we have not discussed Gogny and relativistic [26] realizations of the EDF, the 

key points of this section regarding the predictive power of currently available EDFs 

holds for all three implementations. This is due to the fact that these EDFs generally 
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provide comparable predictions, in spite of some variations for particular observables 

[[26], [106]]. 

The application of phenomenological EDFs for a broad range of nuclear structure 

problems has been a success story in the past few decades [26]. Recently, the growth 

of available computational power has allowed large-scale projects, such as deformed 

calculations of ground-state properties over the nuclear chart. Systematic calcula-

tions of ground-state properties, as well as some collective excitations, for all known 

and theoretically predicted nuclei, are now available. Mass residuals over about two 

thousand known nuclei obtained at the SR-EDF level are of the order of one MeV, 

which is an accuracy sufficient for a direct comparison with experimental data [[121] 

-[123]]. Such calculations also provide a reasonably good description of static proper

ties beyond the ground-state energy, e.g. shell structure, pairing gaps, charge radii, 

individual excitations or deformation. 

Likewise, MR-EDF calculations have already met a lot of success, in particular 

regarding the description of dynamical correlation energies, vibrational/rotational 

excitations and super-deformed bands or shape transitions [[124], [125]]. Among 

other challenging areas of interest, extensive studies have for instance been dedi-

cated to [106] (i) (asymmetric) fission properties of heavy elements, (ii) the forma

tion of superheavy nuclei, (iii) the application of dynamical approaches based on the 

time-dependent HF/HFB formalism to describe nuclear fission/fusion, and (iv) collec

tive motions through the self-consistent (quasiparticle) random phase approximation 

((Q)RPA). 

However, many challenges are still ahead in order to (i) further increase the overall 

precision of EDF-based methods, e.g. decrease mass residuals, (ii) describe excited 

states with spectroscopic accuracy (of the order of 300 keVs), as it is achieved for 

sd-shell nuclei using the Shell Model [[132]-[134]], (iii) control spin and ferromagnetic 

instabilities and (iv) improve the predictive power of EDFs in the unknown region 

40 



Two-neutron separation energies 

25 

20 

> 

15 

10 

• 1 « 

"L 
I*u 
* * \ 
- + * l 

• \ 

CO
 

data exits 

..»,..... I. i. 

i ' i 

-*• Experiment 
x HFB-SLy4" 
- HFB-Skp ' 
• HFB-D1S • 
* SkX 

RHB-NL3 . 

LEDF 

i i i 

50 60 70 80 
Neutron Number 

0 

60 80 100 120 

- Neutron Number 

x * * 

data do not exist 

± 

is***. 
±. 

80 90 100 110 120 
Neutron Number 

130 

Figure 4.1: Illustration of the asymptotic freedom of phenomenological EDF 
models in the case of two-neutron separation energies. In the major shell where 
empirical EDFs are adjusted on experimental data, the agreement between all 
relativistic and non-relativistic calculations is clearly seen. In the next major shell 
where no data exist, discrepancies between these models become more apparent 
(from J. Dobaczewski et al. [150]). 
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of the nuclear chart. Indeed, while all empirical models constrained by experimental 

data mostly agree with each other within the major shell they are adjusted in, extrap-

olations towards the nucleon drip-line do not agree with each other. This divergence 

in the next major shell is seen for most standard observables such as the two-nucleon 

separation energy or the pairing gap and is exemplified by Fig. 4.1. 

Furthermore, empirical EDF models give rise to spurious effects. For instance, 

the particle-hole effective vertex extracted from typical empirical functionals is rarely 

fully antisymmetric (e.g. fractional density-dependencies). This leads to a series 

of difficulties in SR- (self-interaction and self-pairing) and MR- (poles and spurious 

steps) EDF calculations. Some of these issues have been identified and practical cures 

have been proposed [105]. However further developments are required in order to 

develop a fully satisfactory theory. 

4.2.6 Outlook 

Various groups are pursuing different strategies to overcome the deficiencies of phe-

nomenological EDFs and make them of spectroscopic quality. In this context, spectro-

scopic quality refers to the ability to describe and predict not only the bulk properties 

such as mass and radii but also low-energy spectroscopy and collective states of nu

clear systems far below the MeV accuracy. On the one hand is the effort to empirically 

improve the analytical form and couplings of the EDFs [[31]-[36]]. This includes 

• The construction of EDFs containing beyond second order derivatives [35]. Re-

cently, the authors of Ref. [35] undertook the construction of nuclear EDF with 

up to sixth order in gradients. It is possible to reduce the large number of cou

plings significantly by the successive application of symmetry constraints such 

as Galilean (gauge) invariance. Further reduction can be accomplished due if 

one requires time-reversal and spherical symmetries. Furthermore, the number 
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of couplings also depends on whether one incorporates density dependencies on 

all or some of the couplings. 

• Approaches that rely on the pseudo-potential perspective, start by selectively 

enriching various parts of the effective interaction. There have been several 

suggestions to augment the traditional Skyrme interaction given in Eq. (4.12), 

e.g. adding a spin-density dependent term [33] 

V = l tt(l + xlP^soiR)}^) S(f) + i tf(l + xfP^iR^st) 5(r), (4.19) 

where the exponents 7S and 7st are even integers in order for the EDF to remain 

time-even. The contribution of these terms vanish in even-even nuclei. These 

additions seem to remove spin and ferromagnetic instabilities [33] from conven-

tional EDFs, an improvement that must be seen in light of the fact that the 

spin-isospin components of nuclear EDFs are less understood/constrained than 

their scalar/isoscalar counterparts. 

• Systematic fitting of the nuclear EDF. This does not necessarily imply improv-

ing the form of the functional. Rather, it focuses on the application of advanced 

algorithms to explore the manifold of permissible parameterizations with the use 

of a large set of experimental data as a reference [106]. Traditionally, practition-

ers have tåken the easier route of only using ground state properties of magic 

and semi-magic nuclei to constrain the couplings. The availability of data on 

nuclei far from the valley of stability have provided more stringent constraints 

on the couplings, with special emphasis on the isovector properties [106] that 

are less understood. The experimental data identified for this purpose include 

(i) bulk properties such as binding energy and charge radii (ii) spin-orbit split

ting in nuclei for which accurate data exists such as 40Ca, 48Ca, 90Zr or 132Sn 

43 



in addition to 1 60 and 208Pb which are usually employed (iii) neutron radii (iv) 

odd-even staggering of binding energies in medium to heavy nuclei (v) isotopic 

shifts, deformations, excitation properties and (vi) nuclear matter saturation 

properties and the equation of state of pure neutron matter. While no definite 

proof exists that one can not obtain significant improvement by following this 

method, recent results [109] indicate that the form of both the functional and 

couplings might be too limiting to obtain predictive EDFs. 

A complementary approach is one that relies less on fitting empirical functionals 

to known data, but rather attempts to constrain the analytical form of the functional 

and that values of its couplings from many-body perturbation theory (MBPT), based 

on realistic two- and three-nucleon (NN and NNN) interactions [[110]-[154]]. This is 

the path followed in this work, which is similar in spirit to OEP (orbital-dependent 

energy potential or ab-initio DFT ) [115, 116]. The main techniques, results, possible 

future extensions and outlooks are presented in the next several chapters. 
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Chapter 5 

Constructing Non-Empirical 

Energy Density Functionals 

5.1 Constructing Non-Empirical Energy Density 

Functional 

It is commonly asserted that the nuclear many-body problem is intrinsically non-

perturbative [38]. The strong short-range repulsion, the strong tensor force from iter-

ated pion-exchange, and the presence of nearly bound states in the S-wave constitute 

the main reasons as to why the nuclear many-body problem is non-perturbative [27]. 

However, this argument relies on the assumption that the nuclear many-body problem 

is driven by an absolute, unique Hamiltonian, without making explicit reference to the 

intrinsic energy or resolution scale that underlies the modeling of such a Hamiltonian. 

However, recent studies have shown that the above statements need qualifica-

tion as the nuclear Hamiltonian depends on the energy resolution scale [27]. In this 

context, an important recent development is the construction of low-momentum in-

teractions starting from chiral effective field theory (EFT) interactions and using 
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renormalization group (RG) methods. Even though these methods can be applied to 

any interaction that originally couples low and high momentum states, chiral EFT 

interactions are preferable starting points because of the consistency that character-

izes their many body-forces forces and operators as well as because of the possibility 

to systematically improve their precision by going to higher chiral orders. Refer to 

section 2.4 for details. 

The use of low-momentum interactions simplifies the nuclear many-body problem 

as it eliminates, or at least weakens, the main origins of non-perturbativeness [27]. 

In particular, the consistent three-nucleon interactions become perturbative as one 

lowers the intrinsic momentum scale of the two-nucleon piece [28]. Calculations of in-

finite nuclear matter using MBPT in terms of low-momentum two- and three-nucleon 

interactions show convergence, at least in the particle-particle channel. As Fig. 5.1 

shows, including the second-order contribution from the two- and three-nucleon inter

actions, one obtains reasonable saturation properties of infinite nuclear matter, with 

weak dependence on the resolution scale [28]. Moreover, the freedom to vary the 

order of the input EFT interactions and the cutoff via RG provide a powerful tool to 

assess theoretical errors arising from truncations in the Hamiltonian and the chosen 

many-body approximations. 

All these features point to the fact that it may be possible to construct non-

empirical energy density functionals. Indeed, Hartree-Fock becomes reasonable, if not 

quantitative, starting point [28], which suggests that the theoretical developments and 

phenomenological successes of EDF methods for Coulomb systems may be applicable 

to the nuclear case for low-momentum interactions. 

5.1.1 Philosophy, Goals and Limitations 

Calculations in INM [28] and the binding energies and radii of finite nuclei [29] show 

that at least second-order contributions from MBPT have to be incorporated to ob-
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Figure 5.1: (Color online) Nuclear matter energy per particle as a function of Fermi 
momentum kr at the Hartree-Fock level (left) and including second-order (middle) 
and particle-particle-ladder contributions (right), based on evolved NzLO NN 
potentials and 3NF fit to E%H and r±H . Theoretical uncertainties are estimated by 
the NN (lines) and NNN (band) cutoff variations (from Bogner et. al. [28]). 

tain quantitative success. Likewise, first-order treatment of pairing correlations using 

low-momentum two-nucleon interaction show good agreement with experimental re-

sults [112]. On the side of the interaction (chiral EFT interactions in this case), one 

needs to go up to N3LO in the chiral expansion in order to describe elastic scattering 

phase shifts in the two-nucleon sector with x2 /data close to one [12]. In addition, 

these interactions still contain significant coupling of low and high momentum modes 

which necessitates their consistent evolution to low-momentum to make HF a rea-

sonable starting point and obtain a convergent MBPT. Hence, a microscopic/non-

empirical calculation of the nuclear many-body problem should incorporate at least 

the contribution of the diagrams shown in table 5.1 for the normal and table 5.2 for 

the anomalous/pairing contributions, starting from low-momentum interactions. 

Though the perturbativeness of the nuclear many-body problem when using low-

momentum interactions is quite comforting, MBPT is still numerically too expensive 

for a systematic calculation of hundreds of heavy open-shell nuclei. Additionally, 

the accuracy of currently favored approaches such as empirical EDFs cannot be met, 

at this point, with completely non-empirical MBPT calculations. Hence, a method 
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Table 5.1: MBPT contributions from NN and NNN interactions up to second-order 
(Normal contractions) in Hugenholtz representation. 

MBPT Order 

First Order in MBPT 

Second order in MBPT 

NN-interaction 

oo 

0 

NNN-interaction 

•4 

A 
Table 5.2: The first-order anomalous/pairing diagrams, otherwise called Bogoliubov 
contributions, from the NN and NNN interactions in Hugenholtz represenation. 

OO 
from NN: from NNN: 
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is sought to map MBPT contributions to numerically tractable forms, such as local 

EDFs, with the aim of refitting some parts of the functional in a controlled and 

theoretically motivated way. 

In this work, we do not attempt to derive a completely non-empirical EDF. Rather, 

we have a more pragmatic goal of enriching and improving current phenomenological 

Skyrme EDFs by identifying and incorporating novel density dependencies arising 

from missing pion physics. We further restrict the work in that only the first-order 

(HF) contributions from the un-evolved chiral EFT NN + NNN interactions at N2LO 

have been calculated. Subsequently, we apply the DME to the resulting nonlocal 

energy functional to obtain a quasi-local Skyrme-like EDF. In practical implemen-

tations, this is to be followed by refit of the couplings, which has the added benefit 

that the whole scheme can be implemented in existing codes with minimal modifi-

cation. Refer to section 8.1 for more details. With the goals and limitations of the 

work in perspective, the justifications to concentrate only on the HF contribution 

from non-evolved chiral interactions and subsequent application of the DME are as 

follows: 

• First, it is well known that RG evolution of interactions to low-momentum 

modifies only their short distance structure [15]. The input chiral interaction has 

both contact and finite-range pion exchange parts, as given by Eq. (2.12). The 

RG evolution modifies mostly V^(A). However, the energy contribution from 

Vct(A), at least at the HF level, is of the same form as conventional Skyrme 

EDFs. Thus, refit of the Skyrme parameters should compensate for the RG 

evolution of this part of the interaction. As we are primarily interested in 

identifying the dominant density dependencies arising from finite-range physics, 

it is justifiable to apply the DME to the energy contribution from V^. 

• Second, inclusion of second-order contributions necessitates the development of 
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non-trivial extensions of the DME technique, as those expressions involve non-

localities both in space and in time [166], while the currently available DMEs 

can only treat nonlocalities in space [[170],[107]]. This can be illustrated by 

contrasting the contributions to the energy from the HF and second-order di

agrams. Discarding all spin and isospin coordinates for the sake of simplicity 

and considering only NN interaction, VNN, 

£HF oe Jdndf.V^dn-f^pin.^pif^n), (5.1) 

?/ £2n oe y I df\ df\ dfs dr4 *a{n) W*)v (I* - ?2\) Mn) MK) 
a/3-få' 

rNNnzt x # ( r s ) 4>WA) VnN(\r3 - f4|) <^(f3) tøft) 

x Paa PPP i1 ~ Pil) (l ~ PSå) , g 2^ 

e« + C/9 — e7 — es 

where paa is the density matrix, defined in Eq. (9.70), in the canonical single-

particle basis of the reference HF reference state and ta is the energy of the 

single-particle level. While the HF contribution, £HF, can be expressed as a 

functional of p(?i, f2) only, the same cannot be said about the second-order con

tribution, S2U , or any beyond-HF contribution. This is due to the occurrence 

of energy-denominators. A satisfactory extension of the DME that can properly 

handle beyond-HF contributions and in particular the energy-denominators is 

yet to be invented [166]. 

Third, it is well known that the dominant contributions to bulk nuclear proper

ties are of Brueckner-Hartree-Fock (BHF) type [38]. Operationally, this amounts 

to replacing the vacuum interactions in the HF expression by a Brueckner G-

matrix, which is discussed in section 3.2. But, the G-matrix "heals" to the bare 

interaction at long distances. This is usually demonstrated by studying the 

behavior of the S—wave in-medium pair wave-function (at zero center of mass 
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momentum) of the Bethe-Goldstone equation in a repulsive hard-core spherical 

potential [38] 

4>(r) 

<f>(r) 

sin(A;r) sin(£xc) g(r,rc) 
kr 

0, r < rc 

krc g{rc, rc) 
, r > rc, (5.3) 

(5.4) 

where rc is the radius of the hard-core, k is the relative momentum of the 

two-particles and 

^r"> = ér^L dk 
, sin(k'r)sm(k'r) 

k2 - k'2 (5.5) 

Figure 5.2 shows the solution of Bethe-Goldstone S-wave solution for rela

tive momentum, k = kp/2, and the uncorrelated two-body wavefunction, 

<J>Q{T) — sin(kr)/(kr). Simple analysis shows that g(r,r') decreases rapidly 

Uncorrelated 

Correlated(BG) 

x = kpv 

Figure 5.2: (Color online) The S-wave solution of the Bethe-Goldsone equation and 
the uncorrelated S-wave function. 
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with increasing r, with a distance scale of l/kp. One defines the healing dis-

tance, rh, which refers to the distance beyond which the the wave-function 

effectively attains the unperturbed value. This is given by the approximate re-

lation kFrh w 1.9, more or less independent of the relative and center of mass 

momenta [38]. Then, one can use Eq. (3.10) to show that G—matrix heals to 

the bare interaction in the same manner. Hence, applying the DME to the 

finite-range part of the interaction, viz, V* at the HF level will capture the 

same contributions to the density-dependent couplings as given by the finite-

range part of the G-matrix in a more sophisticated BHF calculation. In this 

way, the dominant density-dependence that arises from the finite-range of the 

interactions is accounted for. 

• Finally, the algebra required to obtain even the starting point for the DME (viz, 

DME on the HF energy from chiral EFT NN + NNN interactions at N2LO) 

is so tremendous that most of the work can be done only using some form of 

automation [[156], [161]]. This is especially the case if one wants to have the 

complete form of the functional without any restricting assumptions regarding 

time-reversal invariance and/or spherical symmetry. 

This work is just the first step in the long-term project of building non-empirical 

nuclear EDF. There are several possible extensions that can be made in the future. 

Refer to section 8.2 for a related discussion. 

5.2 The Density Matrix Expansion (DME) 

The DME was originally proposed by Negele and Vautherin [170] to deri ve an ef-

fective nuclear Hamiltonian. In the first paragraph of their paper [170], Negele and 

Vautherin note that the purpose of the density matrix expansion is to relate the compu-
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tationally simple effective interactions of S and Skyrme forces to the computationally 

cumbersome theory derived directly from the nucleon-nucleon force. 

In deriving an effective nuclear Hamiltonian. Negele and Vautherin avoided fol-

lowing the moment based expansion which were considered in earlier works [167] in 

which one considers expansions of the fourier transform of a short-range interaction. 

Their rational for doing that was the fact that the long range part of the nuclear 

G-matrix heals to the bare one-pion-exchange-potential (OPEP), which causes con-

vergence problems for moment based expansions. Hence, they invented an expansion, 

the density matrix expansion, that exactly includes the long-range OPEP tail for the 

nuclear density matrix [170]. 

5.2.1 Basics of the DME 

The central idea of the DME is to factorize a local or nonlocal density obtained from 

the one-body density matrix (OBDM) by expanding it into a finite sum of terms that 

are separable, usually, in the relative and center of mass coordinates, (f, R). There 

are a few exceptions to the (f, R) choice as the DME-coordinates. These exceptions 

are mostly relevant to the the application of the DME to the HF energy from the 

chiral EFT NNN interaction at N2LO. Refer to section 7.2 for details. Adopting 

(f, R) as our DME-coordinates and the notation introduced in Ref. [168], one writes 

the general DME formulae 

'max 

P,(ri,r2) * ^ n f ( A : r ) ^ ( ^ ) , (5-6) 
1=0 

ramax 

S , ( f l , r 2 ) * Yl n m ( * r ) Qrn(R) , (5.7) 
TO=0 

"max 

P,(ri,r2) « Y.nn{kr)Vn{R) , (5.8) 
n=0 
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"max 
^ ( n , r 2 ) « J2 n o > r ) Qo{R) , (5.9) 

0=0 

«max 

GM/2) « X>£(fcr)« t t(Æ) , (5.10) 
u=0 

where A; is a momentum scale to be determined that sets the scale for the decay in 

the direction of the relative coordinate f, Tl{(kr) are the so-called n—functions that 

remain to be specified, and 

{Vi(R), Qm(R)} e {pq(R),Tq(R),Jq^(R),VPq(R),Apq(R),sq(R), 

Fq(R),fq(R)}, (5.11) 

denote the local normal densities 

{Vn(R),Qo(R)}e {pq{R),?q(R)Jq^{R)^pq(R)APq{mMR), 

Pq(R),fq{R)}, (5.12) 

refer to the local anomalous densities, while Gq(Ti/2) and 7iu(R) are from the set of 

local normal or anomalous densities. 

The DME emphasizes separability of the expansion in the relevant expansion-

coordinates above the approximation of nonlocality. That is, even for local densities 

that depend on a single coordinate and hence with no nonlocality, one can talk about 

an expansion in terms of the DME-coordinates as stated by Eq. (5.10). In a sense, 

one is approximating the nonlocality in one of the DME-coordinates. For exam-

ple, Pq{f\) = pq(R + f/2) can be expanded in terms of quantities that depend on 

R and f separately. In practice, however, the emphasis on separability above the 

approximation of nonlocality is of limited use as most DME approaches rely on an-

alytical techniques that fail to work when there is a long-range of nonlocality in the 
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expansion-coordin at e. 

This work concentrates raainly on the expansion of the nonlocal scalar and vector 

components of the normal part of the density matrix, viz, pq(fi,f2) and ^ ( n , / ^ ) . 

The extension of the approach to non time-reversal invariant systems is important 

for constraining the nuclear EDF for those systems. This is discussed in section 5.3.6. 

The apparent need for the DME of the local densities (pg(ri/2) and Jq(f 1/2)) that 

appear in the exact HF energy of time-reversal invariant systems, justifications for 

why one should avoid expanding these densities and related technical problems and 

their possible solutions are discussed in section 5.3.7. The expansion of the nonlocal 

anomalous densities, especially p(fi,f*2), has drawn some interest due to the need to 

enrich the pairing part of the nuclear EDF. Nevertheless, unlike the nonlocal normal 

densities, there are some conceptual and technical difficulties to be overcome. These 

are discussed in section 5.3.8. We gauge and compare the accuracy of the various 

DME approaches using non self-consistent measures. Finally, we augment this with 

preliminary self-consistent tests. These tests are discussed in section 5.4. 

5.2.2 Existing variants of the DME 

The main problem to be solved in constructing a viable DME technique is the deter-

mination and optimization of the various w—functions and the identification of which 

local densities occur in the expansion of the given density. The currently available 

DME techniques [[170]-[173]] approach this problem in two distinct ways. On the one 

hand are those methods that resum infinite order "Taylor-series" expansion terms 

in a elever way, while on the other are those that start with an inspired ansatz and 

paramterize and optimize the the ir—functions phenomenologically. In the first group, 

we have the original DME of Negele and Vautherin and its variants [170, 171, 173], 

while in the second group we have those that are mostly based on gaussian approxi-

mations of the scalar part of the OBDM [172]. In the phenomenological optimization 
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of the 7T—functions, the parameters are optimized to recover various properties of the 

OBDM such as the correct local semiclassical kinetic energy density and integrated 

projector identity of the OBDM (see Eq. (5.50)). 

In addition, there is yet another classification based on whether the techniques 

approximate the full quantal or semi-classical approximations of the density matrix. 

While most of the existing DME techniques approximate the full quantal OBDM, the 

ones that are based on Wigner-Kirkwood expansion of the single-particle propagator 

fall into the second/semi-classical category [173]. Further differences appear with 

regards to the choice made to fix the momentum scale k. In fact, the DME of Ref. [171] 

is a variant of the original one proposed by Negele and Vautherin (NV-DME) [170] 

that improves the accuracy of the expansion obtained at first order (nmax = 0) by 

optimizing the momentum scale k. 

In appendix 9.5.3, we recover the original DME of Negele and Vautherin using 

the PSA-DME discussed in the next section and the generalized PSA-DME, while 

appendix 9.5.2 contains the key points of the semi-classical Wigner-Kirkwood based 

expansion of the density matrix. 

5.3 PSA-DME 

5.3.1 Motivation for a PSA reformulation of the DME 

One of the main shortcomings of all existing DME formulations is that they are 

mostly focused on the scalar part of the OBDM. For instance, Negele and Vautherin 

acknowledge in their seminal paper that they were not able to design an approximation 

of the vector part of the OBDM on the same level, and thus with the same accuracy, 

as the one they obtained for the scalar part. This is an essential problem in view 

of constraining the nuclear EDF non-empirically. Indeed, the vector part of the 

OBDM is non zero in spin-unsaturated nuclei, i.e. in almost all nuclei. Moreover, 
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all available DME techniques hold only for time-reversal invariant systems, with no 

apparent extension to non time-reversal invariant systems. 

These problems convinced us to formulate a DME approach that has the following 

qualities: (i) the accuracy for the scalar part of the OBDM should be comparable to, 

if not better than, the existing DME techniques. It should be mentioned that the 

percentage error of existing DME techniques for the scalar part of the OBDM is quite 

small for various measures, which should be enough to capture the correct density 

dependence of the couplings in the resulting EDF. (ii) The DME of the vector part 

of the OBDM should have a comparable accuracy to that of the scalar part. Except 

for the DME of Negele and Vautherin [170] which performs badly for the vector part 

of the OBDM1, the other techniques either do not refer to the vector part at all or 

their accuracies are not gauged properly. (iii) It should readily be extended to non 

time-reversal invariant systems. 

Hence, we formulated a new DME technique which we call PSA-DME where PSA 

stands for phase space averaging. Note that the PSA formulation of the DME is 

not completely new. In fact, Negele and Vautherin start using the "local energy 

approximation" technique of Ref. [174] and mention the possibility of phase space 

averaging in infinite nuclear matter. For the actual derivation, they revert to a formal 

Bessel-function plane-wave expansion. From a formal point of view, the PSA approach 

developed below differs from that mentioned in Ref. [170] and is applied consistently 

to both the scalar and the vector parts of the OBDM. For instance, in spite of the 

weak angular dependence of the scalar part of the OBDM [176], the inconsistency 

in the order of application of the angle-averaging and series expansion that exists in 

Ref. [170] is not an issue in the present case. Still, it is shown in appendix 9.5.3 that 

our PSA-DME approach can be used to recover the original DME. 

In the following, some of the key properties of the momentum phase space of 

1Refer to section 5.4 for actual percentage errors of the various DMEs. 
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finite Fermi systems are identified with the aim of incorporating these features into 

the 7T—functions with the PSA-DME approach. We implement two different strategies 

to ineorporate these phase space features: analytical derivation and phenomenological 

optimization. 

5.3.2 Momentum phase-space of finite Fermi systems 

The momentum phase-space distribution of quantum systems can be studied via a 

multitude of quantum phase-space distribution functions [169]. Studies using the 

Wigner distribution in Ref. [177] and the Husimi distribution in Ref. [178] show that 

the local single-particle momentum distribution displays a diffuse and anisotropic 

Fermi surface at the (spatial) surface of the finite system. These are peculiar features 

of the momentum phase-space distribution that are not present for homogeneous 

systems. 

The Wigner distribution function [175] is often used to approximate the phase 

space distribution of nuclei. It has been studied both analytically and phenomeno-

logically for various models applicable to nuclei (see Refs. [176], [179] , [180]). The 

models include pure harmonic oscillator with sharp and smeared occupations, har-

monic oscillator with orbital occupation from DDHF and meanfield calculations with 

a Woods-Saxon potential. 

The analytical calculations of the various models give the same general form for 

the Wigner distribution function. For the case of magic nuclei and in the absence 

of spin-orbit interaction, the distribution function fq(R,p) in a harmonic oscillator 

potential depends solely on the dimensionless parameter e [180] 

€ = p2 + — R2, 5.13 
mu> n 
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and is given by 
A £ °° 

WP) = TOT 52(-l)KL*KQ£)nK, (5-14) 
^ ' ' K=0 

where hu; = ålA'1^ is the oscillator size parameter. K is the principal quantum 

number and L\ is the associated Laguerre polynomial, given in appendix 9.1.1, and 

UK is the occupation probability. In Ref. [177], the authors parameterize the Wigner 

distribution using the Fermi distribution function. All these studies indicate a diffuse 

fermi-surface for the local momentum distribution with the diffuseness being much 

pronounced around the nuclear surface. 

The above model calculations are able to capture the diffuseness, but they do not 

show anisotropy/deformation of the local fermi surface. In Refs. [178] and [177], the 

authors solve for the single particle wave functions in spherical Woods-Saxon potential 

with no spin-orbit interaction and show that the local fermi surface is anisotropic. 

This has no counterpart in the phase space distribution of infmite-fermi systems 

(INM). The anisotropy of the local single particle momentum phase space distribu

tion can be quantified with the lowest order deformation of a spherical phase space 

distribution, viz, quadrupolar deformation. In Ref. [178], the local quadrupolar de

formation of the momentum Fermi surface (for a given isospin) is given by2 

pq{f) - fdp[m-P)2-F]Hq(f,p) 
fdpjPHq(r,p) 

3 

iTi 

^]T|(e>VM(fg)|2p« - 1 + O((kFr0)
2), (5.15) 

where Hq(f,p) is the Husimi distribution, r0 is a length scale used in the Husimi 

distribution and kF is a short-hand notation for the local Fermi momentum kg
F(R) 

2 As the anisotropy is usually not large, it is not necessary (at least in this work) to go to higher 
multipoles to quantify the deformation. 
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defined in a local density approximation through 

kq
F(R) = k% = 37r2A,(i?)l1/3 . (5.16) 

In subsequent formulae, the R dependence of kq
F(R) is mostly not shown explicitly 

for notational simplicity, except in formulae/places where we have to remind its R 

dependence. Equation 5.15 is computed in the basis y>i{rq) that diagonalizes ptj, 

i.e. the basis from which the Slater determinant |$) is built. Details on the Husimi 

distribution and simplified expression of P^ir) in spherical symmetry suitable for 

semi-magic nuclei is provided in the appendix 9.5.1. 

Fig. 5.3 shows the quadrupole anisotropy of the local neutron momentum distri

bution calculated for a selection of semi-magic nuclei. Single-particle wave-functions 

are obtained from a Skyrme-EDF calculation performed with the BSLHFB code [181] 

using the SLy4 parametrization of the Skyrme EDF. The pairing terms in the EDF 

were switched off. Fig. 5.3 also displays the local neutron Fermi momentum (Eq. 5.16) 

in order to locate the position of the nuclear surface. In spite of pronounced shell fluc-

tuations, the result corroborates the conclusions drawn in Ref. [178]; P£(R) becomes 

negative just inside the surface, denoting an oblate momentum Fermi surface while, 

outside this region, the local momentum Fermi surface becomes strongly prolate. In 

both cases, we have tåken an axis normal to the nuclear surface as the reference axis. 

The next two sections show how we make use of these properties of the phase-space 

distribution of finite Fermi systems to design our PSA-DME of both the scalar and 

vector parts of the OBDM. 
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Figure 5.3: The quadrupole anisotropy P^(-R) of the local neutron momentum 
distribution in a selected set of semi-magic nuclei. The black, red and blue vertical 
lines indicate the approximate half-radii (where the density becomes half of the 
density at the origin). 
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5.3.3 PSA-DME for the scalar part of the OBDM of time-

reversal invariant systems 

In PSA-DME, there are three key steps that are used to determine the local den-

sities that occur in the expansion of the given nonlocal density and optimize the 

7T—functions. These are: (i) Identifying of the nonlocality operator as an exponential 

derivative operator acting on the OBDM. (ii) Performing a Taylor series expansion of 
—* 

the operator about some momentum scale k. This is the point at which a momentum 

scale is introduced in the DME, though the actual form of k is not fixed yet. (iii) 

Averaging the momentum scale over the local momentum distribution of the system 

of interest. 

Applying the first step, viz, extraction of the exponential nonlocality operator of 

the scalar part of the OBDM, one writes 

—* 7* —* T* 

p9(i? + - , J R - - ) = 2 j tifåvq) <Pi(ri<rq) P% 
ia 

(5.17) = e"{ l > 22<pl(f2<rq)<Pi(fi(Tq)pl 

In the next step, one extracts a phase factor elvk in order to perform a Taylor series 

expansion of the non-locality about the momentum scale k. Hence, 

e^\l + f.{^^-lk) + 1-

rx=T2=R 

Vi - V2 .-• 
IK 

x ^V*(T2oq) Viirxøq) p\ (5.18) 
rl=r2=R 

where we truncated the expansion at second order. In principle, nothing prevents to 

one from including higher order terms. This is especially true in light of recent empha-
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sis on the inclusion of beyond-second-order gradient terms in Skyrme like EDFs [35]. 

In that case, one needs to define additional local densities in addition to the ones 

given in section 9.2.3. 

Noting that the derivation is restrieted to time-reversal invariant systems, the 

next step consists of angle averaging over the orientation of r, which is a reasonable 

step as the scalar part of the OBDM has negligible dependence on the orientation of 

f [176]. The final step involves averaging the dependence on the momentum scale k 

over a model phase space that characterizes the system under study. As mentioned 

in section 5.3.1, we make two different choices. First, we perform the PSA with 

the phase space of the locally-equivalent pure isospin infinite matter. Denoting the 
—* 

function to to be averaged as gq(k), this operation amounts to setting the local phase 
—* —* 

space distribution, fq(R,k), as 

fq(R,k) = G(k-kq
F(R)), (5.19) 

and thus 

G ^ = TihrJ „<**&(*)» (5-2°) 
inskF J\k\<kq

F 

where Gq(k
q
F) is the final result of the PSA. Prior to the application of the PSA, 

Eq. (5.18) is angle averaged with respect the orientation of f. This is a valid ap-

proximation as the scalar part of the normal component of the OBDM has a weak 

dependence on the orientation of f [176]. The subsequent application of the PSA as 

defined by Eqs. (5.19) and (5.20) on the resulting expression yields the DME of the 

scalar part of the OBDM as 

Pq(R + ^R-~) * K{kFr)pq{R) + r^W2{kFr) 

+ hF
2

Pq(R) 
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\APq(R) - rq(R) 

(5.21) 



with 

E S t ø r ) - 3 ^ f ^ , (5.22) 
kF(R)r 

I l5 (4r ) - 3 J l ( ^ ( | ) r ) . (5.23) 
kF(R)r 

The details of the derivation can be found in appendix 9.5.3, where we perform the 

derivation in a more general context and recover specific cases. The reason why we do 

not have 11^ in the above expression is because the time-odd density, jq(R), vanishes 

for time-reversal invariant systems. Note that the n—functions given in Eqs. (5.22)-

(5.23) are completely analytical with no fit parameters. 

However, the PSA did not invoke the diffuseness and anisotropy of the the phase 

space of finite Fermi systems discussed in the previous section. With the step of angle 

averaging over the orientation off, the orientations of F and k are decoupled, implying 

that the anisotropy is not going to play a key role in the subsequent approximations. 

Hence, we concentrate only on the incorporation of the diffuseness. 

Unfortunately, we could not find completely analytical ways of characterizing the 

diffuseness. Thus, we parameterize fq(R, k). Inspired by the nature of the Wigner-

distribution of the phase space distribution as discussed in the previous, we use the 

following ansatz to model the local momentum distribution 

- - / k2 v -3k2/kq2 

iq(R,k) = C{l + a-^)e fik /kF , (5.24) 
Kp 

where a and j3 are parameters to be optimized, kF is the local Fermi momentum and 

C is a constants determined from normalization i.e. volume integral of the momentum 

distribution should give 4/3nkF . Hence, C reads 

8 tf>'2 

° - 3VSF(3a + 2/?) • ( 5"2 5 ) 
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Since it is of interest for later use, the average local RMS momentum is given by 

ft-^-Vsferi*- (5'26) 

where the average is calculated taking Eq.(5.24) for the local momentum distribution. 

To finalize the determination of the scalar part ir—functions, the following steps are 

applied to Eq. (5.18): (i) Average the leading term over the local momentum distribu

tion given in Eq.(5.24). (ii) Since the next-to-leading order term is a small correction, 

it is simply evaluated at the RMS momentum given in Eq.(5.26). Applying the above 

prescription, one obtains the -K—functions 

_ (a kfr*-2(3 (2(3 +3a)) kf*im 
U° " 2(3 (3a + 2(3) 6 ( 5 - 2 ? ) 

Up
2 = j^-hCkfr), (5.28) 

kq
F r 

where the actual values of the parameters a and (3 are obtained from numerical fits to 

data obtained from converged self-consistent calculations of a selected set of isotopic 

chains. For the optimization of these parameters and the results on the accuracies of 

PSA-DME of the scalar part of the OBDM, refer to section 5.4. 

Several comments are in order regarding the PSA-DME of the scalar part of the 

OBDME and the 7r-functions given in Eqs. (5.22)-(5.23) and (5.27)-(5.28). To start 

with, even though the phase space of finite nuclei has a marked difference from that of 

INM, the accuracy obtained using the two sets of TV—functions is different at most by 

a few percentage points, with the ir—functions given by Eqs.(5.27)-(5.28) being the 

better ones. This is apparent from the results of section 5.4. The reason being, unlike 

the vector part of the OBDM discussed below, the scalar part is a bulk quantity with 

most of its contribution coming from the interior of the nucleus where, to a good 

approximation, the momentum distribution resembles the one of INM [176]. Hence, 
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this is the main reason for the comparable accuracies obtained using the two sets of 

7r—functions. 

From the form of the n—functions, it can be seen that the DME is not a naive Tay

lor expansion of the OBDM with respect to the non-locality in f. The TT—functions 

resum dependencies on r to all orders in some of the leading terms, such that the long 

distance limit of the OBDM is reproduced. In the approach followed in Ref. [170], the 

truncation of the expansion about k to second order leaves II2 indeteminate. Specifi-

cally, the values of the coefficients of terms beyond kq
Fr in the Taylor series expansion 

of 1I2 are undetermined. This indeterminateness gives one the freedom to optimize 

nfj, which can be viewed as selecting a different rearrangement and truncation of the 

expansion [170]. 

Furthermore, the zeroth-order ir—function Yi^kpr) given in Eq. (5.22) is exactly 

the one found in the original NV-DME of Ref. [170]. Just as in the DME of Negele and 

Vautherin, this particular PSA reduces to the first term in symmetric INM, thereby 

reproducing the exact OBDM of INM. The second order n—function li^kpr) given 

in Eq. (5.23) is different from 

n5 = 105fSr. (5-29) 

which was obtained in Ref. [170]. However, this relates to the previous remark that 

emphasized the freedom in choosing the second-order 7r-function. In conclusion, our 

PSA-DME of the scalar part of the OBDM is essentially equivalent to the DME of 

Ref. [170] if we choose fq(R,k) to be the phase space of locally equivalent neutron 

or proton infinite matter. As a final remark, note that the phenomenological PSA 

whose 7T—functions are given in Eqs. (5.27) and (5.28) does not reproduce the exact 

OBDM of INM. This should not be surprising as the model fq(R,k) used in that 

case, Eq. (5.24), has a completely different analytical structure from that of the 
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corresponding fq(R,k) of INM (Eq. (5.19)). 

5.3.4 PSA-DME for the vector part of the OBDM in time-

reversal invariant systems 

Again, restricting the discussion to time-reversal invariant systems and applying the 

same set of steps as for the scalar part of the OBDM, the vector part of the OBDM 

can be approximated by 

gq\R+2,R~2J = 5 - / Vi^^ti føl^ki) <?i(fi(Tiq) P% 
ia-i <r. Y"l 

if-k „ r . ( — L ^ — - - i k ) 

%a\G2 

= e e ^ ^ X <P*(f2a2q) 

x (a2\a\a1) ifiinaiq) p% 
f1=r2=R 

if-k J i , - / V i — V2 

~ ér K < 1 + r ' ~i^)\ X Vii^rt) 2 
1CT2 

x {<r2\a\(Ti) (Pi(fiaiq) p% (5.30) 
f-i =fo=R 

where only the first order term in the expansion of the non-locality operator is kept. 

The zero-order term in the above expansion provides the local spin density sq(R) 

which is zero for the time-reversal invariant systems. In fact, for time-reversal invari

ant systems, the cartesian spin-current pseudotensor density Jq4lu{R) and its gradients 

are the only standard local densities at hand to express the DME of the vector part of 

the OBDM. Consequently, we could not express the higher-order (beyond first-order) 

terms in the above expansion in a closed form in terms of the cartesian spin-current 

pseudotensor density and its gradients. Nevertheless, section 5.4 shows that PSA-

DME attains a high accuracy even at this level of approximation. Still, there is a 

possibility of studying higher-order terms in the context of the generalized Skyrme 

67 



EDF discussed in Ref. [35]. 

Here also we carry out the two strategies of incorporating the phase space infor

mation: analytically and phenomenologically (parameterically). We start with the 

analytical procedure which was also discussed in Ref. [170], though with no reference 

to phase space of finite systems. Sticking with the first term, the authors in Ref. [170] 

argued that averaging over the orientation of k and setting k = kq
F should be sufficient 

to provide a reasonable account of the vector part of the exact OBDM. This gives 

s « , / ^ + ^ - ø -*nf(fc«r) J2r^JgtlUf{R), (5.31) 

where 

nf(fc?r) = Ukl(R)r) . (5.32) 

If instead one applies the same procedure as for the scalar part of the OBDM, i.e. one 

performs the PSA over the locally-equivalent pure-isospin infinite matter phase-space, 

as given in Eq. (5.19), one rather obtains 

n f t ø r ) = 3 J l ^ ) r ) . (5.33) 

However, and as mentioned in section 5.3.2, the local momentum phase-space 

distribution of finite nuclei has a markedly different behavior than that of INM around 

the nuclear (spatial) surface. Given that the vector part of the density matrix peaks 

around the nuclear surface, it seems more appropriate to perform the PSA over a 

diffuse and anisotropic phase space. Given that we do not have a parameter free 

way of introducing the diffuseness and the primary quantity to be averaged, elf'k. 

couples the orientation of f and k, we limit ourselves to invoking the anisotropy of 

the phase space. As a completely analytical approach, we perform the PSA over a 
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deformed Fermi sphere that incorporates the information contained in the function 

P^iR) discussed in section 5.3.2. We do this by averaging over a spheroidal local 

momenturn distribution given by 

fq(R,k) = e(k'-kq
F) (5.34) 

where 
kl kl kl 

K = k% J - ^ - + - 4 - + - ^ - , (5.35) 

with a(R) and c(R) being position dependent quantities that relate to P^R). The 

specific relations and various details of the derivation are given in appendix 9.5.3. 

The final result differs from that in Ref. [170] only in the analytical form of T\\. The 

result reads 

where 

n f f ø r ) = 3 J l ^ g ) r ) , (5.36) 
kp{R)r 

* - (^sr^> • 
The PSA over the locally-equivalent neutron or proton infmite matter modifies 

the analytical form of ITf compared to NV-DME, i.e. compare Eqs. (5.32) against 

( (5.36) and (5.39)). In addition, and contrary to the scalar part of the OBDM for 

which it is unimportant, taking into account the deformation of the local momenturn 

distribution of the finite system leads to a modification of the relevant momenturn 

scale kp. In view of isolating the significance of such an effect, while preserving the 

benefit of using PSA, one can set P^iR) = 0 in Eq. 5.37. 

In the second strategy, we incorporate the phase space information by parameter-
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izing the anisotropy of the Fermi surface. In leading order, one talks about quadrupo-

lar deformation of the Fermi Surface. Thus, the PSA is performed in a phase space 

distribution with 

fq(R, k) = Q(k - kq
F) (1 + a (3 Cos2(0) - 1)), (5.38) 

where a is a quadrupolar deformation parameter to be optimized, 6 is the angle 

between R and k and Si is the Sinlntegral function. Even though the deformation 

actually couples R and A;, we approximate this as a coupling between f and k to 

actually obtain the final form of the n—function. Thus, ITf(.R, r) reads 

n((A£r) = 3 f f )
r ) + T ^ p (~18Si(4r ) - 6kg

Frcos(kFr) + 24sm(kq
Fr)) . (5.39) 

To parameterize the deformation parameter a, we take hint from Wigner-Kirkwood 

expansion of the scalar part of one-body density matrix. As explained in appendix 9.5.2, 

the h2 Wigner-Kirkwood expansion of the Wigner transform of the scalar part of one-

body density matrix reads 

PwK,q{R,P) = Q(X-hq
w)-^AVqS'(X-hq

w) + n" ^ ^ 2 • ^ r ^ 
8m y v w' 24m 

(Wq)
2 + -(p.V)2Vq 

m 

x S"(X - hq
w) + 0(h4), (5.40) 

2 
where h^ = Hq = ^ + Vq(R) is the single particle Hamiltonian and Å is the 

chemical potential. The origin of the deformation at this order is the (p- V)2Vq(R) 

term. It is well known that close to the nuclear surface, the self-consistent potential 

that acts on the nucleons, Vq(R), and the density, pq(R), have similar profiles. Both 

are usually approximated by the Woods-Saxon shape, of course with opposite signs. 

Hence, we make the series of approximation |V|2V^(i?) ss AVq(R) oe Apq(R), with 
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our final parametrization being 

a = mApq(R) + b (5.41) 

where ra and b are constants to be fit. If one sets a = 0, the U.{(kFr) given in 

Eq. (5.39) is recovered. In Sec. 5.4, we discuss and compare the accuracy obtained 

using all of the preceding DME variants for the vector part of the OBDM. 

5.3.5 kq
F and isospin invariance of the resul t ing E D F 

Dealing separately with the neutron or proton OBDM in a finite nucleus, it is natural 

to perform the corresponding PSA over the phase space of neutrons or protons of 

the system. However, this provides TV—functions with an explicit isospin dependence. 

Even though this does not have any implication at this point, it does when we apply 

the DME to the HF energy of two- and three-nucleon interaetions as discussed in 

the next two chapters. This is because the EDF that results from the application of 

the DME breaks isospin invariance (but not its isospin symmetry). As mentioned in 

section 2.2, there are isospin-breaking parts of the nuclear interaction, still the fact 

that we get an EDF that breaks isospin invariance even when we start from one that 

has that symmetry might not be a welcome feature. A simple prescription to recover 

symmetry of isospin invariance is to replace all kF with the isoscalar kF which is 

defined through 

kF(R) = kp = 
3TT2 , ^ 

-irPiR) 

1/3 

(5.42) 

where p{R) = pn{R) + pP(R)- Fig. 5.4 shows kF, kF and the isoscalar kp extracted 

from a converged self-consistent calculation of 214Pb. This is a neutron rich nucleus 

and thus, the difference between the three momentum scales should be maximized. 

Considering the small difference between kp
F(R), kF(R) and the isoscalar ÆF(-R) that 
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Figure 5.4: (Color online) kF, kF and the isoscalar kF extracted from a converged 
self-consistent calculation of 214Pb, a neutron rich nucleus. 

we see in Fig. 5.4, the prescription of replacing kF with kp in the n—functions might 

be a satisfactory method to recover isospin invariance in the resulting EDF. 

5.3.6 Extension t o non-t ime-reversal invariant systems 

The PSA-DME approach has enabled us to obtain both analytical and parametrized 

forms of the various ir—functions that occur in the expansion of the scalar and vector 

parts of the OBDM in time-reversal invariant systems. However, from a formal point 

of view, PSA-DME uses the assumption of time-reversal invariance only to turn off 

the time-odd densities. Thus, one can envision direct extension of PSA-DME to non-

time reversal invariant systems, where the time-odd densities such as jg(R) in the 

case of pq(fi, r*2) and sq(R), Tq(R), Fg(R) in the case of s(fi, f^) start playing a vital 

r ole. 

Nevertheless, it will be clear from the subsequent discussions that the appearance 
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of time-odd densities gives rise to various constraints that the TV—functions have to 

satisfy in order for the EDF (that results from the application of the DME to the 

starting HF energy) to respect certain global and local symmetries. This requires 

a systematic study of the problem. We tackle this by formulating a generic DME, 

which we call the modified-Taylor series, and using it to perform a formal study of 

the issues related to the extension of the DME to non-time reversal invariant systems. 

The complete development of a DME for non-time reversal invariant systems with 

specific analytical/parameterical ir—functions is outside the domain of this work. 

The modified-Taylor series approach was introduced in Ref. [168] and expanded 

in this work. It consists of replacing the numerical coefRcients in the Taylor series 

expansion of the density being expanded with ir—functions which are yet to be deter-

mined. These ir—functions can depend on one or several variables. Illustrating the 

expansion with the nonlocal scalar density and the nonlocal vector density, we have 

p,(fi, r2) ~n0(ft) A, {å) + nx(fi)
r- • (vx - v2) pq (fi, f2) 

P<,(n, f2) + 2 n ^ ) 
-* \ 2 / -» \ 2-| 

fl=p2=
R 

r-, =fo=R "l=r2 

-U3(Q)[-.V1)[-.V2 )pq{fl,T2) 
rl=r2=R 

(5.43) 

and 

sq(R ±r-,R^r-) WQ{Q)sq{R) ± n ; ( f i ) - • ( Vi - V2 )5,(fi, r2) 

+ 2 nf m 
\ 2 / - , \ 2-i 

i - v , + (1.1, sq(ri , r2) 

n ^ ( 0 ) ( ^ - V i ) ( ^ - V2 ) ̂ ( r l , r2) 

r\=r2=R 

fx=r2=R 

(5.44) 
r-i=rn=R 

where the ix—functions are to be found analytically or optimized phenomenologically. 
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fl represents the variable on which the n functions depend. Requiring fl to be scalar, 

dimensionless and depend on r implies that fl = rk. In case where fl is assumed 
—* 

to depend on r, then fl = h(f, k) for some scalar function h. Heve, we assume the 

7T—functions to be independent of the orientation of f. The choice of håving four 

7T—functions instead of five in Eqs. (5.43) and (5.44) is motivated by the need to get 

a symmetric expansion in R + | and R — | . 

Even though a definite approach with which to constrain fl and the rc—functions 

is be discussed, it should be mentioned that the modified-Taylor series approach is 

formally applicable to all local/nonlocal and/or normal/anomalous densities in both 

time-reversal and non time-reversal invariant systems. In line with this, the modified-

Taylor series expansion for all the densities defined in section 9.2.3 and 9.2.5 is given 

in appendix 9.5.7. In the construction of this expansion for the various densities, 

we have not made any reference to a constructive way of fixing the basic expansion 

variable, fl, and the ir—functions. This is where explicit connection is realized between 

the modified-Taylor series and PSA-DME (and/or other DME variants) discussed in 

the previous few sections. In other words, the modified-Taylor series can be seen as a 

template which can be adapted to various DMEs which in turn can be considered as 

as approaches to fix fl and the n—functions. However, there is a technical problem 

in that one cannot, at this point, fully express the modified-Taylor series expansion 

in terms of standard local densities. Hence, we need one more layer of assumptions 

to realize the explicit connection. 

Both problems are solved at once by realizing that the basic quantity that one is re-

ally interested in approximating is the energy density (or energy) at the Hartree-Fock-

Bogoliubov level instead of the local densities. One starts from the exact expression 

for the energy, and approximates it by replacing the exact densities (local/nonlocal) 

with their counterparts as given by the modified-Taylor series expansion. Requiring 

the resulting expression to be a local EDF which fulfills various local and global sym-
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metries results in several constraints relating the different 7r—functions. The required 

local or global symmetries can be rotational invariance, parity, particle number, time-

reversal invariance, isospin invariance and local gauge invariance or its traditional 

counterpart, Galilean invariance. Naturally, the validity of some of the symmetries 

depends on the starting interaction. 

In order to make the procedures clear, these steps are applied to typical terms 

from the central and tensor exchange parts of the Hartree-Fock energy (of two nucleon 

interaction). Since we are interested only in the form of the expression, numerical 

coefficients and spin-isospin labels of the interaction are dropped. As discussed in 

section 9.6.1, a typical term from the central part of the interaction takes the form 

<$|Vb|$) = J2 [tådrVcWptifurJp^n), (5-45) 

where |<3>) is the slater determinant HF wave function. Next, we apply the modified 

Taylor series expansion of the densities, use our assumption that the n—functions 

are independent of the orientation of r* and perform angle integration f dQrj thereby 

obtaining 

(*\Vc\*) = ^J2jdRdrVc(r) (J%{£1))2&R) + ̂ (nf(fi))2 jq(R) • jq(R) 

+ ^ ng(fl) I r ø pq(R) (Apq(R) - 2r„(£)) 

-jnp
Q(fl)Ilp

3(Q)pq(R)rq(R) , (5.46) 

where we have truncated terms containing beyond-second order derivatives. Applying 

the same set of steps to a typical term from the tensor interaction, ($ | Vr|$), we obtain 

($|yT |$) = J2 f dRdrVT{r)sq{n^)-U?2in), 
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= 4TT 

„2 

^2 f dRdrVT(r) 2 - , ffN -, 
(WQ(n)Ysq(R) • sq(R) 

+ T(nf(n))2£j^(£)jWM(Æ) 

r.2 

+ T- Ilftr) nf (r) $,(£) • ( As(1(R) - 2Tq(R) 

r2 

- T I IS ( r )n5 ( r ) ^ ( i 2 ) -T g ( i 2 ) (5.47) 

with similar procedures being applicable to the remaining terms in the HFB energy. 

In order to make the explicit connection between the modified-Taylor series ex-

pansion and PSA-DME (and/or other DME variants), we make use of the PSA-DME 

(and/or other DME variants) to approximate the Fock energy of time-reversal invari

ant systems and set it equal to the corresponding expression obtained from for the 

modified-Taylor series expansion. In this way, the n—functions and their arguments Q 

in Eqs.(5.46) and (5.47) that multiply the time-even densities can be fixed. Still, the 

7T—functions that multiply the time-odd, local and anomalous densities are not yet 

determined. This is where the relations between the ir—functions through symmetry 

and other constraints come in to the picture. 

Constraints on the n—functions 

Requiring the n—functions to be independent of the orientation of f and the need to 

obtain gauge (Galilean) invariant bilinear combinations of densities in the resulting 

EDF impose strong constrains on the iv—functions. The gauge transformation of the 

one-body local densities is discussed in appendix 9.3. These constraints are obtained 

by applying the modified Taylor series expansion to the various local and nonlocal 

densities that occur in the HFB energy of a fmite-range two-body interaction and 

requiring the resulting EDF to be gauge invariant. Dropping the arguments of the 

7T—functions for ease of notation, the resulting constraints read 
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(i) ng(n^ + ng) = 2[n?]2 and nf(nf + nf) = 2[nf]2 

(ii) 7r£ n{ = T^Q ir{ and 7rf 7TQ = 7TQ 7rj' 

(ii)ngnf = n?nf 

(iv)ng = II2 where v is either p9(fi,r2) or sq(fi,f2) 

(v) 7T—functions of the pairing densities have to be real-valued functions. 

One of the most important qualities of the original DME of Negele and Vautherin 

is its exact treatment of unpolarized, symmetric INM at the Hartree-Fock level. Con-

straining the w—function DME to reproduce INM limit of the direct and exchange 

parts of the energy density separately, we obtain the following two constraints on the 

7T—functions 

M) 2 = 1 (5.48) 

(nsf-M>!ns(n2 + ns) = (såM)' , (5.49) 

where k must reduce to kp = [3ir2pq]^ when one goes to INM. Thus either one 

has to use a fixed k = kF or the parameter A; should be such that it evolves to 

k —»• k9
F = [37r2p9] ̂  as one goes to INM. 

Further constraint is obtained using the idempotency of the density matrix to 

express the particle number. Le. from pq = p2
q, the particle number can be expressed 

as 

Nq = Trpq= f dRdf\p(R,r)\2 (5.50) 

Thus, a constraint on the ir—functions can be obtained by inserting the DME expres-
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sion for pq(R,r) 

N„ I (IR dr ng(fi)/9,(Æ) + iUl(n)r-]q(R) + -Up
2(n){APq(R)-2rq(R)) 

12 m^)rq(R) 

/ < = 4TT / dRdr 

r.2 

K(Q)2p2
q(R) - jWKnf jq(R) • jq(R) 

+ -np
0({l)Tlp

2(n)pq(R)(Apq(R) - 2rq(R)) 

-jUp
0(n)Up

3(il)pq(R)rq(R) (5.51) 

which is an integral constraint that can be utilized a posteriori to calculate some 

parameters. In the original DME and its variants, it can be shown that the num-

ber constraint is satisfied exactly [202], while the PSA-DME breaks this constraint 

slightly. 

Finally. constraints on the 7r—function come from the large and small limits of r. 

The 7T—functions should go to zero for large r and for small r, the modified Taylor 

series has to reduce to ordinary Taylor series expansion. In addition, we require the 

7T—functions to be such that the gradient, Vf, and the gradient squared, [Vf]2, of the 

densities are reproduced exactly at f = 0. The resulting constraints are 

n„(o) = 

n(,(o) = 

irø) = 
lim n0(r) = 

= iMo) = n2(o) = n3(o) 

= ni(o) = o , 

= o, 

= lim 111 (r) = l im n2( r) 

= 1, 

l imn 3 ( r ) = 0. 

(5.52) 

(5.53) 

where we have dropped the density label on the TT—functions to denote that these 

constraints hold for the TV—functions of any density. Additionally, we used only IIj 
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which refers to the ith ix—function from nonlocal densities, even though the constraints 

are valid for 7̂  (from local densities). The only exception is there is no 7r3 in the local 

case. In the DME of Ref. [172], the authors impose a local constraint 

Arpg(fi,r2) = rq(R)- \Pq(R), (5.54) 
r=0 4 

which is to be satisfied by the DME of pq(fi,f2). They refer to this constraint as 

the local imposition of the correct kinetic energy density. One recovers Eq. 5.54 by 

combining Eqs. (5.52), (9.108) and (9.109). It can easily be shown that n—functions 

satisfying the small r limits given in Eq. (5.52) satisfy this constraint. Le. this 

particular constraint is a subset of the constraints listed in Eq. (5.52). 

Concluding, the explicit relationship that we established between the modified-

Taylor series expansion and PSA-DME (and/or other DME variants), together with 

the various constraints obtained through symmetry and other subsidiary conditions 

enable us to reduce the number of independent unknown 7r—functions significantly. 

Still, the number of unknown ir—functions is larger than the number of constraint 

relations. Thus, the complete determination of all the ir—functions requires further 

parametrization of some of the 7r—functions. In practice, it may not be possible 

to satisfy all the relations among the 7r—functions and at the same time obtain a 

reasonable accuracy. In that case, some of the less stringent constraints have to be 

relaxed. Since this work is confined to the development of non-empirical EDF for 

time-reversal invariant systems, most, if not all, of these constraints are satisfied by 

default as one can simply choose the ir—functions of the time-odd densities in such a 

way that they satisfy the constraints. 

79 



5.3.7 Remarks on the DME of the local densities 

The apparent need for the DME of local densities can be seen from the Hartree con-

tribution to the energy originating from the central part of a two-nucleon interaction. 

Reproducing the expression derived and discussed in section 9.6.1 

(Vbir) = dfidf2pq(fi)pqi(f2), (5.55) 

where for simplicity, we have dropped the singlet-triplet label of the interaction and 

numerical coefficients. Thus, if one requires a local EDF, one needs to approximate 

Eq. (5.55) utilizing a suitable DME expansion for the local densities. Equivalently, 

one can approximate the energy density, Eden, which is defined as 

— dn?pq(ri)pqt(r2), (5.56) &den — , 

with J" dttp referring to angular integration with respect to the orientation of f. 

In line with this, Negele and Vautherin, in Ref. [170], approximate the energy 

density given in Eq. (5.56) as 

35 
£den « pq(R)pq/(R) + -^s-Mrkp) 

-^Vpq(R)-Vpq/(R) 

jPql(R)APq(R) + jPq(R)Apq/(R) 

(5.57) 

by applying the expansion technique they devised for the nonlocal density, p(fi,r2), 

to the product of the local densities, pq{r\) pi {f2). However, subsequent numerical 

tests [[183],[184]] indicated that the expansion of local densities is at the root of most 

of the error propagation and enhancement in self-consistent tests of the DME. This 

is discussed in detail in section 5.4.6. 

Even though the DME makes no direct reference to the range of nonlocality, as 
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mentioned in section 5.2.1, the fact that the range of nonlocality with respect to 

f is very large for the local density, pq{f\/2) (where r\/2 means the argument can 

be ri or f2), is mentioned to be the main reason why the DME does not work as 

accurately as it does for the nonlocal density, / ^ ( r i , ^ ) . In Ref. Bhaduri78, using 

a one-dimensional harmonic oscillator model with partial occupation of the single-

particle states, the authors show that the nonlocality with respect to f* of the local 

nucleon density, pg(r 1/2), varies on the scale of the whole system, while the scale 

of the nonlocal nucleon density, pq(r\,r2), is set by the local Fermi momentum k^. 

Even in the surface of nuclei, one can see that p2,^,^) falls off much faster than 

pq(ri)pq(f2) in the relative coordinate, f, by considering a one-dimensional surface 

with an exponential decay [183]. Le. by modeling the local density with a schematic 

exponential decay function. Hence, the fact that both the local density and energy 

density involved in Eq. (5.57) have a large nonlocality scale with respect to f make 

the DME approximation inherently inaccurate, at least in one-dimensional problems. 

Nonetheless, in problems with dimensions greater than one, the simple charac-

terization of the failure of the the DME of pq(r1/2) based on the scale of nonlocality 

needs refmement. This becomes obvious when one considers closed-form analytical 

expressions for pq(r\,r2) and pq{ri/2) in various model systems. In Ref. [208], a closed 

form expression for pq(fi, f2) is given for the case of an isotropic harmonically trapped 

ideal Fermi gas in any dimension. The more relevant expression is the one given in 

Ref. [185] for a three-dimensional oscillator with a smeared occupancy 

Pq(n,f2) = pq(R)exp 
1 2 2l + t 
-a r 

4 l - t 

^ 1 / 2 ) = ^ ( i - * 2 r 3 / 2 e x p 
2 2 ! + * 

l - t 

(5.58) 

(5.59) 

where t — e f3hu}, (3 is the inverse temperature, a2 — muj/h with the energy E = (N + 

3/2) Hu). Thus, one can argue that both the local and nonlocal nucleon densities are 
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governed by comparable scales, relegating the supposed large scale of the nonlocality 

in f* as an incomplete or limited explanation for the failure of the DME of pg(fi/2). 

The missing piece of the explanation can be identified once the DME-coordinates 

are replaced in Eq.(5.59), viz, ri/2 = -R ± 1/2 f. This makes the difference between 

the local and the nonlocal densities to be transparent. The nonlocal density falls-

off exponentially (Gaussian fall-off) with respect to r independent of the orientation 

of f, which is also the case for pq(fi,^) extracted from a converged self-consistent 

calculation of nuclei as shown in section 5.4. In contrast, the local density shows 

maximally different behaviors depending on the orientation of f. In short, sitting 

at a particular location in the nucleus, R, one can go to the surface or deep into 

the interior of the nucleus with the same r but different directions of f. Thus, the 

significant dependence of pq(fi/2) on the orientation of f i s partly responsible for the 

failure of the DME of pq(f 1/2) as DMEs invariably average over the orientation of f. 

In Ref. [183], it is argued that the DME of the Hartree contribution can be avoided 

by treating it exactly, especially as the exact Hartree treatment does not result in 

a significant increase in numerical complexity. In a related work, Ref. [184], the 

authors show that treating the Hartree contribution exactly removes most of the 

errors in the self-consistent numerical test of the DME. This and related issues are 

discussed in section 5.4.6. Our numerical tests include both expanded and exact 

Hartree treatments. In the expanded case, the ir—functions of pq(fi/2) are fixed by 

equating Eq. (5.57) with the expression obtained from replacing pq{f\/2) in Eq. (5.56) 

with 

pq{ri,2) - T${to)pq{R)±*t{Sl)r--VRpq{R) + ^ ( n ) ( ^ . V f l ) 2 p , ( f l ) , (5.60) 
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and truncating at second-order in the gradient 

•"der. 
2^4 [4(0)] pq{R)Pq,{R) - - K(fi)]" Vft(Æ) • VPql(R) 

+ nri(n)tf(to) 

which results in the TT—functions 

Trf(n) 

where 0 = rA;̂ . 

pq(R)Ap,(R) + pa,(R)APq(R) 

105 

/ (r*?.)8 

105 

k{rkq
F) 

(rkq
Fy 

h{rkq
F) , 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

The parameterized version of the 7r—functions for pq(f\/2) is inspired by the an-

alytical form of pq(f 1/2) in the three-dimensional harmonic oscillator with a smeared 

occupancy [185] as given in Eq. (5.59). First, we fix the oscillator frequency u> and 

the oscillator length b according to the Blomqvist-Molinar formula [38] 

hu = 45A-1/3 - 25A~2/3 , 

197.33 
_ V940 hu ' 

(5.65) 

(5.66) 

where A is the mass number of the nucleon under consideration. The parameterized 

7T—functions are given by 

TTf(fi) 

ao+{j) +{j 
-r2/b2 

,-r2/b2 

= e 
-r2/b2 

(5.67) 

(5.68) 

(5.69) 

(5.70) 
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where the gradient corrections are damped with a gaussian of range b. From the short 

range limit of the 7r—functions as given in Eqs. (5.52), the leading parameter a0 — 1. 

The rest of the parameters, viz, {a2, a^} are fixed by fitting the exact Eden a s given by 

Eq. (5.56) with Eq. (5.61), with densities extracted from a converged self-consistent 

calculation of a selection of nuclear chains. 

A direct justification for the form of the TT—functions given in Eqs. (5.67)-(5.69) 

comes from the fact that pq(x) of spherical nuclei can be fit to a very good accuracy 

with the ansatz 
n=4 „ 

A^) = E M 0 ) a n - e - r / f c , (5.71) 

where pq(0) is the value of the central density and x stands for ri, r2, r or R. The fact 

that p(0) is used instead of an additional free-parameter is due to there being local 

densities that play a similar role in the DME. Fig. 5.5 shows the neutron density 

obtained from a converged self-consistent calculations of 48Cr and 208Pb and their 

corresponding fit curves. Our extensive tests show that the pq(f\/2) length scale b 

given in Eq. (5.66) remains uniformly valid and, perhaps not surprisingly, one can 

produce the same high-quality fits to almost all nuclei. However, the parameters show 

strong shell fluctuation, as can be seen from Fig. 5.6 which shows the parameters for 

Cr and Pb isotopic chains. 

The above discussions consider only the local nucleon density, pg(r,i/2). The strong 

fluctuation of the other time-even local density, J9(ri/2), with respect to f* due to its 

strong dependence on the shell structure of the particular nucleus under study, did 

not permit a systematic analytical study. Hence, for the numerical tests carried out 

in section 5.4.6, a simple Taylor series approximation is used to fix the ir—functions 

of J1/2 

ici = n{ = n{ =1, (5.72) 

where the arguments must be extended in non time-reversal invariant systems as the 
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Figure 5.5: (Color online) pn(r) for i8Cr and 208Pb from a converged self-consistent 
calculation using Sly4 EDF. 
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Figure 5.6: (Color online) The parameters for Cr and Pb isotopic chains obtained 
after fitting the neutron density, pn(r*i/2), with the TT—functions as given in 
Eqs. (5.67)-(5.69). 
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time-odd local densities jq{f\/2), sq(f\/2), Tq(r 1/2) and Fq(f 1/2) do not vanish. In this 

context, the discussion in section 5.3.6 is relevant. Finally, it should be mentioned that 

these expansions of the local densities can be avoided once the Hartree contribution 

to the HF energy from two-nucleon interaction is treated exactly. The situation is 

different and more complex for the HF contribution from the chiral EFT three-nucleon 

interaction at N2LO. However, with a particular choice of DME-coordinates, we avoid 

the expansion of local densities altogether. This is discussed in section 7.2. 

5.3.8 Remarks on the DME of the anomalous densities 

Currently, there are several simple effective interactions that are being used in the 

pairing channel to perform HFB and related calculations. From a practical point 

of view, the simplicity of the effective interactions is necessitated by the numerical 

complexity that one would have to overcome in order to perform a 3D (deformed) 

HFB calculation for deformed nuclei. Still, the accuracy of current pairing part of 

current functionals calls for further improvements and constraints on the form and 

couplings of the functional [26]. 

Similar to what is being implemented in the case of particle-hole part, two com-

plementary approaches, viz, phenomenological parameterizations and non-empirical 

construction of the functional are being undertaken [112]. The non-empirical ap-

proach tries to address the role of the the bare NN + NNN interaction and their 

finite-ranges by successive addition of MBPT contributions in the pairing channel. 

Recently, the first step towards non-empirical pairing functional for nuclei has been 

tåken in Ref. [112] where the first systematic calculation of pairing gaps in semi-magic 

nuclei is carried out. By fixing the normal self-energy contributions with conventional 

Skyrme functionals, using low-momentum NN interaction and accounting only for the 

contribution of 1S0 partial wave to the pairing gaps, the results show that it is indeed 

the leading order (Bogoliubov diagram) that contributes the bulk of the pairing gaps 
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in finite nuclei. However, including NNN interaction in the treatment degrades the 

agreement between theoretical and experimental results leaving plenty of room for 

coupling to collective fluctuations. 

One caveat of these works is the fact that they are limited to spherical nuclei, due 

to the aforementioned numerical complexity to perform 3D HFB calculations. The 

nonlocal contribution to the total energy from the pairing part can be seen from the 

form of the leading order (Bogoliubov diagram). Reproducing the expression given 

in Eq. (9.272) for the spin-singlet, isospin-triplet channel from the central part of the 

interaction, 

{<f>\VSl\$)Pair oc J2 f dndr2VS\r) |p,(fi,f2)|2 , (5.73) 

where one notes that the nonlocal pairing density has the same role as the role of 

Pq{?\, f2) in the particle-hole part of the functional. 

From a formal point of view, the modified-Taylor series DME can be directly 

applied to the anomalous densities, thereby approximating the exact leading-order 

nonlocal pairing functional with a local one. For instance, the nonlocal pairing density 

can be expanded as 

pq(R ± -r R =F \) « mQ)pq(R) ± n{(fi) T- • (Vi - V 2 ) p , ( n , r2) 

pg(n, f2) 

r1=r2=R 

+ \ n§(n) 
\ 2 / -> \ 2 

•nj(«) (^ • v ^ ^ • v2) p,(n, f2) 

rl=r2=R 

, (5.74) 
rl=r2=R 

where the n—functions are yet to be specified. 

However, both the technical and conceptual problems that need to be settled in 

order to obtain accurate TT—functions for the anomalous densities seem to be signifi-

cantly harder than for the normal densities. To start with, the size of the nonlocality 
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with regards to F of the nonlocal pairing density, pq(R ± \ , R =F | ) ; in finite nuclei 

is still under discussion [[186],[187]]. It is commonly characterized by the coherence 

length, £, of nucleonic Cooper pairs. Arguments based on infinite nuclear matter and 

the local density approximation (LDA) seem to suggest that £ as given by Pippard's 

relation [188] 

i = ^ \ - (5.75) 
s nm* A K ' 

is of the size of the nucleus. In Eq. (5.75), m* is the effective mass and A is the pairing 

gap. If the supposed large spatial extension of the nucleonic Cooper pairs in finite 

nuclei were to hold without any modification, a DME approach which does not rely 

on any assumed short-range nonlocality needs to be invented. In fact, the stronger 

versions of these arguments stipulate that the existence of a small parameter r0/£, 

where r0 is the interaction range, implies that pairing in nuclei should be insensitive 

to the details of the nuclear interaction. This is supposed to justify phenomenological 

parameterizations using a local functional with no derivative corrections [189]. 

Practical calculations in finite nuclei paint a moderately different and favorable 

picture. Indeed, results from the recent non-empirical pairing calculations [112] sug

gest that some details of the interaction may be important. Furthermore, the intuitive 

arguments that one builds starting from INM regarding such quantities as the size 

of the nucleon cooper pairs require precise qualification. In Ref. [187], the authors 

study the neutron correlation length, t;n(R), håving defined it as 

UR) 
\ 

|2 (drr4\pn(R,r)Y 
1 J 2 , (5.76) 
f dr r2 \pn(R,f)\ 

where the subscript n denotes that the quantities are extracted for neutrons. The 

strong position (density) dependence of the correlation length can be seen from 

i ~* 12 

Fig. 5.7. In addition, the authors extract \pn(R,r) | which is shown in Fig. 5.8. 
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Figure 5.7: (Color online) Coherence length £(R) for 220, 60Ca, 60Ni, 104 

212Pb (From Pillet et. al. [187]). 
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It can be seen that the nonlocality in r is in general in the range of 2 — 3/m. In 

contrast, the correlation length is much larger except close to surface where it attains 

values in the range of 2 — 3fm. Nonetheless, the basic quantity that is approximated 

by the DME is | pn(R, r) \ , which reduces the significance of the large values of the 

coherence length. In Ref. [190], the authors conduct a related study of a slab of in-

finite nuclear matter, confirming the smallness of the local correlation length at the 

surface and its largeness inside the slab. 

0.106 1.25 0.106 

r(fm) r(fm) r(fm) 

Figure 5.8: (Color online) \pn(R,r)\2 calculated with HFB-D1S for w4Sn, 120Sn, 
128Sn. Scale has been multiplied by a factor of IO6 (From Pillet et. al. [187]). 

Hence, these realistic studies of pairing in finite nuclei point to the possibility 

of developing a DME for the anomalous densities. In Ref. [191], a leading-order 

semi-classical expansion of the anomalous density based on the Thomas-Fermi ap-

proximation is given as 

pq(n, F2) « Cjo(kq
F(R)r) pq(R), (5.77) 

where jo denotes the spherical bessel function of order zero and C stands for constants 

characterizing the pairing field strength and the local Fermi momentum. In Ref. [187], 

it is shown that even at this level of approximation, there is a qualitative agreement 
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between the exact and the corresponding DME approximation. In Ref. [38], the 

Wigner-Kirkwood h—expansion of the Bloch propagator of a superfluid system is 

derived (up to h2). Leaving aside any further approximation that might be required, 

performing inverse laplace transform of the h—expanded Bloch propagator should 

recover the gradient corrections to the leading-order expression given in Eq. (5.77). 

In relation to the DME of anomalous densities, further works along these lines include 

working out the analytical expressions for the inverse laplace transform, recovering 

the expressions for the TT—functions and extensive systematic accuracy tests. 

5.4 Accuracy of DME 

The accuracy of a particular DME can be tested by comparing the exact density 

with its DME-approximation. But, our main objective is approximating the HF 

energy density and energy from two- and three-nucleon interactions. As discussed in 

section 6.1 for the two-nucleon case and section 7.1 for the three nucleon case, the HF 

energy expression involves a bilinear or trilinear combination of densities extracted 

from the OBDM. The numerical tests we conduct in this work concentrates on how 

well the DME approximates various contributions to the two-nucleon HF energy, in 

both non self-consistent and self-consistent HF calculations3. 

Prior to going in to the details, the following remarks are in order: (i) We consider 

only time-reversal invariant systems, (ii) Primarily, we concentrate on the DME of 

Pqi^i-,^) and s*g(ri,f2). In the two-nucleon HF energy, these nonlocal densities oc-

cur in the Fock/exchange contribution from the central, tensor and spin-orbit pieces, 

while the picture is both different and significantly more complex in the case of three-

nucleon interaction (refer to section 7.2). The fact that we concentrate mainly on the 

Fock contributions is because the DME is inherently inaccurate for the Hartree con-

3In this section, we make repeated references to the HF energy from the generic two-nucleon 
interaction derived in the next chapter. 
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tribution from NN interactions [[183],[184]]. This is indeed confirmed in section 5.4.6, 

where we advocate treating the Hartree terms exactly. (iii) In a related note, the 

accuracy of the DME in reproducing the various contributions to the HF energy from 

three-nucleon interaction (chiral EFT three-nucleon interaction at N2LO) has not 

been tested. However, we use analytical approaches that ensure that the approxima-

tions used in those calculations are exactly the same as the ones we use for the HF 

energy from NN interactions. (iv) Besides the two PSA-DMEs (the analytical and 

parameterized), we include the original DME of Ref. [170] for the accuracy test, as 

all the other DMEs [ [171]- [173]] concentrate only on pq{fi,r2) and give comparable 

accuracy. 

The three DMEs that we test in the following several sections are labeled as PSA-

DME, PSA-DME-II and NV-DME. For PSA-DME, the 7r-functions are given in 

Eqs. (5.22), (5.23) and (5.36), PSA-DME-II (the parameterized version) is the one 

with 7r-functions as given in Eqs. (5.27), (5.28) and (5.39) and NV-DME refers to 

the original DME of Negele and Vautherin with TT—functions as given in Eqs. (5.22) 

(the same as PSA), (5.29) and (5.32). 

5.4.1 Inputs to non-self-consistent tests 

The generic form of the central, spin-orbit and tensor interactions in the different 

spin-isospin channels are discussed in section 9.6.1, 9.6.2 and 9.6.3. The radial form 

factors in the present calculations are either a gaussian or a renormalized Yukawa 

(according to Ref. [192]). Specifically we use 

-•fl- ic? 

vr (r) = { (5.78) 

5 [e-m7rrerfc(2f - r A) - (r - • - r ) ] , 
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independently of the spin/isospin-singlet/triplet channel, (S,T), and with VQ — 50 

MeV, a = 1.5 fm, mw = 0.7 fm-1. The momentum cut-off Å is set equal to 2.1 fm -1 

while erfc is the complementary error fiinction which is defined as 

2 f°° 9 
erfc(x) = - = / åte-* . (5.79) 

It must be stressed that none of these interactions are realistic twc-nucleon interac-

tions, but rather schematic representatives. Still, they are reasonable form factors as 

the objective of this section is to gauge the accuracy of the DME variants against a 

reasonable reference point that is not itself meant to provide useful or realistic results. 

Finally, note that neutron density matrices and local densities used in the following 

sections have been obtained, for all semi-magic nuclei of interest, through spherical 

self-consistent EDF calculations employing the SLy4 EDF parameterizations with no 

pair ing. 

5.4.2 Fock contribution from Ve 

In time-reversal invariant systems, the expression of the Fock contribution to the 

energy from the central part of the two-nucleon interaction contains a bilinear product 

of non-local matter densities as well as a bilinear product of non-local spin densities. 

Since the latter also appears as part of the tensor contribution to the Fock energy, 

we postpone the discussion regarding the spin-density product to section 5.4.3. 

Before comparing the Fock energy to its DME counterpart, we first conduct a 

more stringent test on the energy density in which the integration over the angle of 

r* has already been performed, i.e. we compare the integrand 

CL&r) = -^y*da-P„(fi ,r2) /on(f2 ,r1) , (5.80) 
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to its DME coimterpart 

2pn(R)Pn(R) + jnp
0(k

n
Fr)Up

2(k
n

Fr)pn(R)(^Apn(R) 

-rn(R) + ^2pn(R)\, (5.81) 

where the latter depends on which variant of the DME has been adopted. We de-

note such integrands as energy densities throughout this section. Strictly speaking, 

it is necessary to multiply them by the interaction to obtain the dimension of an 

energy density. Still, we postpone the folding with the interaction to the second mea-

sure introduced below. In the definition of C^ME(R,r), we have truncated terms 

with beyond-second order gradients, in line with current phenomenological imple-

mentations of Skyrme EDF. In addition, a consistent account of such fourth-order 

derivatives in the EDF would require to go also to fourth order in the DME itself, 

which is not addressed in this work. This is an important point that underlines our 

philosophy that the primary purpose of the DME method is not to reproduce the fine 

details of the OBDM, but rather to reproduce as best as possible the energy density 

and the total energy at a given order in the expansion. The latter two are precisely 

what are gauged in this work, whereas no tests dedicated to the reproduction of the 

OBDM by itself are performed. 

The parameters of PSA-DME-II TT—functions of the nonlocal matter density, as 

defined by Eq. (5.27), read 

a = -0.4130, 0 = 1.2430. (5.82) 

We obtained these values fitting Eq. (5.80) with Eq. (5.81) using densities extracted 

from a converged self-consistent calculations of a selected set of nuclei. 
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Figure 5.9: (Color online) Comparison of CE
n(R,r) and C^ME(R,r) where the 

latter is computed from the TT—functions of one of the three DMEs: NV-DME, 
PSA-DME or PSA-DME-II. Upper panels: two-dimensional integrands. Lower 
panels: ratios of C^ME(R,r) over CE

n(R,r) for fixed values of R. Densities are 
obtained from a self-consistent EDF calculation of 208Pb with the SLy4 Skyrme 
EDF in the particle-hole part and no pairing. 
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Figure 5.9 shows 4 that all the three DMEs provide comparably good profile-

reproduction of the integrand C^n(R,r) within the typical range of nuclear inter-

actions (r ~ 2 fm). Beyond such a non locality, the quality of the reproduction 

deteriorates significantly, with that of PSA-DME deteriorating slightly faster. In ad-

dition, one sees from the lower panels of Fig. 5.9 that the quality of the reproduction 

decreases as one goes to the nuclear surface, i.e. for R > 4 fm. This is slightly 

improved by taking into account the diffusivity of the local momentum distribution 

when designing the PSA-DME for the scalar part of the OBDM, as shown by the 

better accuracy of PSA-DME-II. In general, PSA-DME-II stays much more close to 

one than the other two DMEs, with slight overestimation in the range of nuclear inter-

actions. Note also that, although the plots are provided for two sample nuclei, more 

systematic tests have been performed over several semi-magic isotonic and isotopic 

chains that support such conclusions. 

Coming to the energy itself, i.e. to the integrated product of the interaction vc(r) 

with the central energy density, we compare 

Eg[nn] = 4TT f dRdrr2 vc(r)CE
n(R,r), (5.83) 

E%DME[nn] = 4TT f dRdrr2 vc(r)C^DME(R,r). (5.84) 

Figure 5.10 shows the relative error obtained from the three DME variants com-

pared to the exact Fock contribution for both the Gaussian and the renormalized-

Yukawa radial form factors and for three semi-magic isotopic chains. 

Let us start with Fig. 5.11 that shows that the dependence of the accuracy on 

the range of the (Gaussian) interaction used is significant, i.e. about a factor of 1.5 

between a = 1.0 fm and a = 1.5 fm. As can be expected from the two-dimensional 

4Note that for semi-magic spherical nuclei used in this work, the energy densities C„n(R,r) tind 
C^DME(R,r) only depend on the magnitude of R. 
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Figure 5.10: (Color online) Percentage error of E^ME[nn] compared to E^[nn], 
where the former is computed from: NV-DME, PSA-DME or PSA-DME-II 
II—functions. Densities are obtained from self-consistent EDF calculations using the 
SLy4 Skyrme EDF in the particle-hole channel and no pairing. 
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density profiles in Fig. 5.9. the accuracy decreases as the range of interaction increases, 

which holds for all available DME techniques [[170]-[173]]. This stresses that the local 

quasi-separability of the OBDM with respect to r and R underlining the DME, which 

is exact in INM, deteriorates with increasing non-locality r in finite nuclei. As long as 

the hypothesis of quasi-separability is well realized within the range of the interaction. 

the DME can be quantitatively successful. 

On average, the error obtained with PSA-DME and NV-DME are similar as can 

be seen in Fig. 5.10, i.e. about 6 — 8% for the three isotopic chains and for both for 

the Gaussian and the renormalized-Yukawa interactions. While PSA-DME-II gives a 

better accuracy with a percentage error between —0.5 and 2. Similar improvement 

over that of Ref. [170] is reported in Refs.[[171],[172]]. PSA-DME-II, while it is much 

better than PSA-DME and NV-DME, it shows a gradual drift of the sign of the error, 

from overestimation to underestimation of the exact value, as the interaction range 

increases. 

5.4.3 Fock contribution from Vr 

We now turn to the Fock contribution coming from the tensor part of the NN inter

action. Such a contribution involves bilinear products of non-local spin densities. As 

a matter of fact, two terms with different analytical structures emerge such that the 

exchange tensor energy-density reads 

T*n(R,r) = T^(R,r) + T^2(R,r) , (5.85) 

TLA(R,r) = ^JdQrsn(ri,r2)-sn(r2,n), (5.86) 

T^2(R,r) = ^ / r f a . £ ^ V , ( r i , r - 2 ) 
fus 

X3n>1/(r2,fi) , (5.87) 
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where T^nl(R, r) also appear in the central contribution to the Fock energy. The two 

DME counterparts, which eventually depend on which variants of the DME is being 

adopted, read 

TLTE{R,r) = -j M(kn
Fr)}2 JT Jnjw(R) JnMR), 

l±,v=x ^ 

~l~Jn,iii;\-ft)Jn,i/(i(fi>) I i 

and reduce for spherical systems to 

TS?iME{R\r) = -jMCkn
Fr)]2UR)-Jn(R), (5-88) 

TZME(R^) = 0. (5.89) 

One recovers a pattern which is seen when deriving the erapirical Skyrme EDF from 

an auxiliary Skyrme effective interaction. That is, the central part of the inter-

action only produces the so-called symmetric bilinear tensor terms proportional to 

Jn,fii/(R) Jn,tiu{R) while Tn^ 2 (R, r) that contains asymmetric bilinear tensor terms 

proportional to Jnifil/(R) Jn,^(R) solely comes from the tensor interaction [196]. This 

can be easily traced back to the spin-space coupling that characterizes the tensor 

operator. Since the numerical tests are presently carried out for spherical systems, 

we are only concerned with T^nl(R,r) and Tn^x (R, r). For spin-unsaturated nu-

clei, T*nl(R,r) is highly localized around the nuclear surface as seen in Fig. 5.12 for 

208Pb. The same figure shows the progressive and significant improvement that the 

PSA approach brings to the DME of the vector part of the OBDM. This is realized 

in both PSA-DME and PSA-DME-II. The optimal parameters that we obtained for 
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Figure 5.12: (Color online) Comparison of TE
nl(R, r) and T®n^

E(R, r) where the 
latter is computed from NV-DME, PSA-DME,' PSA-DME-II or from PSA-DME 
with -P (̂-R) = 0 which we denote as INM-DME. Upper panels: two-dimensional 
integrands. Lower panels: ratios of T^^E(R, r) over T£nl{R, r) for fixed values of 
R. Densities are obtained from a converged self-consistent calculation of 208Pb with 
the SLy4 Skyrme EDF in the particle-hole channel and no pairing. 
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PSA-DME-II of s9(fi,r2), as defined by Eq. (5.39), read 

m = 2.543, b = -0.0799. (5.90) 

Within the typical range of nuclear-interactions, NV-DME falls off much faster than 

both PSA-DMEs. Less importantly, NV-DME also introduces artificial and pro-

nounced structures in a region that corresponds to the tail of the interaction. Both of 

these drawbacks are rectified progressively by the PSA-DME approach. While most 

of the improvement is already brought by the spherical PSA (P2(R) = 0, which is 

the same for both PSA-DME and PSA-DME-II), an even better accuracy is obtained 

by incorporating the quadrupolar deformation ^(Æ) of the local momentum Fermi 

distribution. The overestimation of T£nl(R,r) at very small r seen for all DMEs in 

the lower panels of Fig. 5.12 corresponds to a region where the integrand is small and 

where its weight is further reduced in the integrated energy by the r2 phase-space 

factor. 

Coming to the energy itself, i.e. to the integrated product of the interaction VT{T) 

with the tensor energy density, we compare 

E^[nn] = ATT f dRdrr2 vT{r)TE
n{R,r), (5.91) 

E^DME{nn) = 4TT f dRdrr2 vT{r)T°n
ME{R,r), (5.92) 

which for spherical nuclei reduce to the contribution from T^nl and Tn„ i • Figure 5.13 

shows the relative error of the three DMEs compared to the exact Fock contribution, 

for both the Gaussian and the renormalized-Yukawa radial form factors and for three 

semi-magic isotopic chains. For both types of interaction, the percentage error of NV-

DME easily reaches 40%. This is in contrast to PSA-DME and PSA-DME-II whose 

percentage errors are typically within ±10% for most parts of the three isotopic 
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Figure 5.13: (Color online) Percentage error of E^ME[nn] compared to E^[nn] 
where the former is either computed from: NV-DME, from PSA-DME or 
PSA-DME-II. Densities are obtained from self-consistent EDF calculations using 
the SLy4 Skyrme EDF in the particle-hole channel and no pairing. Notice the 
different vertical scale compared to Fig. 5.10. 
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chains. This can be traced to the fact that, while both NV-DME and PSA-DMEs 

overestimate the reference quantity for small r (typically less than 1 fm), NV-DME 

decreases much faster with r, thereby overcompensating for its initial overestimation. 

In contrast, PSA-DMEs stays close to the exact value for a much larger range of r 

values. 

There exist short sequences of isotopes for which the percentage error shows a 

considerable increase. The fact that all three DMEs display such a feature suggests 

that the problem is independent of the specific form of the Ilf function used. To iden-

tify the source of the problem, Fig. 5.14 shows T£n ^R, r) for three nuclei displaying 

a sudden loss of accuracy. One notices that T^n ^R, r) extends over larger intervals 

in R and r than for 208Pb (see Fig. 5.12). This corresponds to the fact that the 

selected nuclei are nearly spin-saturated and generate very small E^[nn] in absolute 

value, as seen from the lower panels of Fig. 5.14. As a result, the relative inaccuracy 

of any DME becomes large and the percentage error increases suddenly. Of course, 

the resulting error in the total EDF remains very small as the corresponding tensor 

contribution is anyway negligible, i.e. the local spin-orbit density Jq(R) is close to 

zero in nearly spin-saturated nuclei. Therefore the sudden losses of relative accuracy 

are not as worrying as Fig. 5.13 initially suggests. 

In conclusion, the use of PSA techniques has allowed us to bring the DME appli-

cable to the bilinear product of non-local spin densities on the same level of accuracy 

as for terms depending on the scalar part of the OBDM. One could certainly work 

even harder to bring down the overall DME percentage error. This could be achieved 

by (i) allowing for additional parameters in the II—functions to be optimized on a set 

of reference calculations. However, our extensive optimization of the two-parameters 

of Ilf have convinced us that one cannot remove the sudden loss of relative accuracy 

discussed above for spin-saturated nuclei. As already stated, this is not a problem in 

the end as the corresponding contribution to the energy is negligible anyway. (ii) One 
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can go to higher orders in the DME, consistently for both the scalar and the vector 

parts of the OBDM. This should however be done within the frame of the generalized 

Skyrme EDF proposed in Ref. [35]. 

5.4.4 Fock contribution from Vis 

Basic analysis 

We now turn to the spin-orbit contribution to the Fock energy. Unlike for the central 

and tensor forces, such a contribution involves both the scalar and the vector parts 

of the OBDM. In this case, we first compare the spin-orbit energy density 

LSF
nn{R,r) = ^jdnrsn{rl,r2)-rxV2pn{r2,r1) , (5.93) 

to its DME counterpart 

LS%>ME(R,r) = i n f t ø r ) ! - 2 £ e^Jn^(R) ^Jllp
0(k

n
Fr)pn(R)) , 

which eventually depends on which variants of the DME is being adopted and that 

reduces for spherical systems to 

LSF
nn

DME{R,r) = I n f C ^ r J ^ X ^ . V ^ ^ I I g ^ r K ^ . (5.94) 

Note that we have truncated terms with more than two gradients in LS"™ (R, r). 

The numerical tests shown in the present section actually use PSA-DME only (no 

PSA-DME-II) with the quadrupolar deformation parameter set to zero (P£(R) — 0). 

We still label the results as PSA-DME. It will be seen that these simplifying choices 

have no bearing on the discussion at hand. 

Figure 5.15 shows that PSA-DME significantly overestimates (in absolute values) 
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the maximum peak of LSnn(R,r) at the nuclear surface. In addition, oscillations 

at larger r, i.e. in the tail of the two-nucleon interaction, are not captured by PSA-

DME. In contrast, NV-DME reproduces relatively well the density profile LSF
n(R, r), 

in particular as for the main peak at the nuclear surface. This suggests that the 

significant improvement for PSA-DME over NV-DME as to reproducing the tensor 

energy density does not carry over to the spin-orbit energy density. The previous 

assertions are supported by tests carried over several isotonic and isotopic chains. 

Looking for possible improvements, we tested that including truncated higher-order 

terms associated with the action of V^ on (l/4Apn — rn + 3/5fc£2pn), when going 

from Eq. 5.93 to 5.94, does not improve the accuracy of PSA-DME. 

Coming to the energy itself, i.e. to the integrated product of the interaction Vis(r) 

with the spin-orbit energy density, we compare 

E[s[nn] = 4TT / d R d r r 2 vLS(r) LS?m{R,r) , (5.95) 

E™E[nn] = 4n fdR dr r2 vLS{r) r2 LS™E(R, r) . (5.96) 

Figure 5.16 shows the percentage error obtained for three isotopic chains. In agree

ment with the analysis done for the spin-orbit energy density, the percentage error 

of PSA-DME is impractically large and negative, in the range of -15% to -50% for 

the two schematic interactions used. In contrast, NV-DME provides a much better 

accuracy with percentage errors within ± 10% for most studied isotopes. Last but not 

least, one notes that the spikes in the percentage errors already discussed in section 

5.4.3 arise for the same isotopes and relate to the vanishing non-local spin density in 

near spin-saturated nuclei. 
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Figure 5.16: (Color online) Percentage error of Ef^E[nn] compared to E[s[nn] 
where the latter is either computed from NV-DME or from PSA-DME. Densities 
are obtained from self-consistent EDF calculations using the SLy4 Skyrme EDF in 
the particle-hole channel and no pairing. Notice the different vertical scale 
compared to Figs. 5.10 and 5.13. 
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Further investigation of the spin-orbit exchange 

The results of the previous section show that NV-DME is better suited than PSA-

DME to reproduce the spin-orbit contribution to the Fock energy. This can be con-

founding in light of the better accuracy obtained using PSA-DME to reproduce the 

tensor contribution to the Fock energy. We can infer from Fig. 5.12 that NV-DME 

underestimates the main peak of the nonlocal spin density while the latter is well cap-

tured by PSA-DME. It is thus puzzling to find the opposite for the Fock spin-orbit 

energy density. In the following we employ a toy model of the OBDM of finite nuclei 

to show that this is due to a fortuitous cancelation of errors. 

Håving already a handle on the non-local spin density sq(fi,r2), we focus on the 

term it multiplies in the spin-orbit energy density, i.e. f* x V2Pg(ri,r2), which we 

first approximate by F x V^ /?q(fi, F2) thanks to the weak dependence of the non-local 

matter density on the orientation of f [176]. Hence, and focusing arbitrarily on 

neutrons, we want to compare the two quantities 

GE = Vnpn(R,r) , 

GDME = VR(up
0(k

n
Fr)pn(R) 

(5.97) 

(5.98) 

where the latter is independent of whether NV-DME or PSA-DME is used. To do 

so, we employ the toy model we discussed in section where the expressions for the 

local and nonlocal neutron densities are given by Eqs. (5.58) and (5.59). From these 

equations, one easily obtains 

*RPÅR + \,å-\) 

^Rpn(R) 

exp 

4a5 

- l / 4 a 2„2 l + t 
l - t 

VRPn{R) 

^-^TTt*"* -a2R2 l - t 
TTt 

(5.99) 

(5.100) 
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The corresponding PSA-DME reads 

Pn(R+2,R-2)~3 k „ r 

r2 

1 + TV i-t 
1 + - Q2 + ~kn

F
2 

5 
pn{R), (5.101) 

such that, given the definition of kF(R), one can easily obtain 

R Up
0(k

n
Fr)p(R) = jo(kFr)VåPn(R) (5.102) 

and show that 

r / D - A — GDME{R,r) • nn \ 

GE{R,r) 
l /4aV 2 2 1 + * 

l - t 

In order to study Gratio quantitatively. we fix the inverse oscillator length, a, using 

the Blomqvist and Molinari formula, i.e. a — (0.90A1/3 + 0.70). In subsequent 

discussions, we take reasonable combinations of A and iV although we show that the 

conclusions of the present section are independent of the actual value of A. 

Before analyzing the behavior of Grau0{R,T)i it is worth noticing that the toy 

nonlocal matter density is exactly separable in relative and center-of-mass coordi-

nates. Such a separability being one inherent, usually only approximate, aspect of 

the DME, we expect the latter to work well in the present case [185]. Computing 

the same ratio as in Grati0(R, r) without the gradient operators, we do indeed obtain 

the good performance of the DME as is visible in Fig. 5.17. Note in particular that 

the ratio is independent of the value of R. Such a result proves that the toy model 

provides a situation comparable to the one studied in Sec. 5.4.2, i.e. the DME of the 

scalar part of the density matrix performs well. Such a performance sets the stage in 

view of qualifying the results obtained below for Gratio(R.r). 

In order to identify the short distance behavior of Grati0{R, f), we perform a Taylor 
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series expansion in r 

< W £ r-) « 1 + ( - ^ ! + ^ ± | ) r 2 . (5.103) 

Looking close to the surface of the nucleus, one can neglect fc^2/6 in comparison 

with the second term of Eq. (5.103). Defining Gerror(R,r) = Gratio(R,r) — 1, one 

obtains 

Gerrm.{R, r) « fo.326 - ^pj r2 . (5.104) 

Equation 5.104 is valid around the nuclear surface. Inside the nucleus, one cannot 

neglect the first term kp2/6 of Eq. (5.103). This is irrelevant as the spin-orbit energy 

density is concentrated around the nuclear surface. Figure 5.18 bears our expectation 

i.e. overestimation of GE by GDME around the nuclear surface for a wide range of R, 

A and ./V values. It can also be seen that there is a gradual and systematic shift from 

slight underestimation to overestimation as one moves from inside the nucleus to the 

nuclear surface. 

Keeping the results shown in Fig. 5.17 as a reference, we conclude that the applica

tion of the gradient operator on the scalar part of the density matrix deteriorates the 

quality of the DME that overestimates the exact results, in particular as one goes to 

the surface of the nucleus where the exchange spin-orbit energy density is maximum. 

Combined with the good approximation of the vector part of the density matrix, such 

a semi-quantitative analysis explains the overall overestimation (in absolute value) of 

the exchange spin-orbit energy provided by PSA-DME (see Fig. 5.16). Contrarily, 

the underestimation of the vector part of the density matrix by NV-DME provides a 

fortuitous, but rather accurate, cancelation of errors such that the nonlocal spin-orbit 

energy density is much better reproduced overall (see Fig. 5.16). Even though we can 

be satisfied with such a situation in the short term future and advocate the use of 

the NV-DME variant for the spin-orbit contribution to the Fock energy, it would be 
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more satisfying on the long run to design a suitable DME for the gradient of the 

scalar part of the density matrix that can be combined with the improved PSA-DME 

for the vector part.This loss of accuracy for the spin-orbit part does not have any 

impact on the application of the DME to the HF energy from chiral EFT NN + 

NNN interaction at N2LO. This is due to the fact that the NN spin-orbit interaction 

that we have at N2LO is zero-range/contact, thus does not require the application 

of the DME. In the NNN case, the problem does not seem to be relevant. Refer to 

section 7.2 for details. 

5.4.5 Hartree contribution from Ve, VLS and Vr 

The numerical results given in section 5.4.6 confirm the view that the DME should be 

applied only to the Fock part of the HF energy. However, for the sake of completeness. 

we gauge the accuracy of the DME when applied to Hartree contributions. As shown 

in the next chapter, the Hartree contribution from the tensor part of the two-nucleon 

interaction vanishes for time-reversal invariant systems. For central and spin-orbit 

parts, the exact integrands for the profile comparison are 

Cnn(R,r) = ^JdnrPnif^p^) , (5.105) 

LS%n(R,r) = -^JdQrPnif^f-Jn^), (5.106) 

while the corresponding DME expressions read 

CSfME « [4(n)]2pq(R)pql(R) - j [<(H)]2Vpq(R) • Vpq,{R) 

+ ^4(Q)np
2(Q) pq(R)Ap,(R) + pq/(R)Apq(R) (5.107) 

LS»fME « ~r2Jn(R)-VPn(R), (5.108) 
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where the 7r—functions in Eq. (5.107) are fixed in two ways: (i) The first set (NV-

DME) are given in Eqs. (5.62)-(5.64). (ii) The seconcl set consists of the parameterized 

functions given in Eqs. (5.67)-(5.69) and whose optimized parameters are: 02 = 0.850 

and a4 = 0.3000. Eq. (5.108) results after fixing the n—functions according to 

Eq. (5.72) (simple Taylor series expansion). The corresponding integrated energy 

contributions are given as 

Eg [nn] = 4TT /dRdrr2vc(r)C%n(R,r) , (5.109) 

E%'DME[nn] = ATT i dRdrr2 vc(r)C^DME(R,r), (5.110) 

E?s[nn] = ATT JdRdrr2vc(r)LS»n(R,r), (5.111) 

EH
Lk

DME[nn) = 4TT JdRdrr2 vc(r) LS»fME(R,r), (5.112) 

Fig. 5.19 shows that for large r values, Eq. (5.107) does not reproduce the correct 

profile of Eq. (5.81) for both sets of n—functions. The two DMEs (sets of TT—functions) 

have opposite effect in that region. In contrast, one can achieve an accurate repro-

duction of the integrated contribution, Eq. (5.109), with Eq. (5.110), when the range 

of the interaction is short. Furthermore, the plots contrast the accuracy of the two 

sets of 7T—functions, with the parameterized version performing significantly better 

as the range of the interaction increases, though with a decreasing overall accuracy. 

Even though this decrease in accuracy is a general trend for all DME approximated 

quantities, the deterioration is more significant in this case than the Fock contribu

tions. Perhaps this is due to the wrong prediction of the exact profile (Eq. (5.81)) 

with Eq. (5.81). Fig. 5.20 compares the profile of the exact Hartree contribution from 

the spin-orbit part of the interaction to its DME approximation. One can see the 

DME fails to properly capture the profile, with a very large error resulting in the 

integrated contributions. 
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Figure 5.19: (Color online) Percentage error of Ec'DME[nn] with respect to E^nn] 
for Cr isotopic chain. The upper plots show C„n, and C%fME for NV-DME and the 
parameterized 7r—function which we call PI-DME. 
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Exact NV-DME 

Figure 5.20: (Color online) LS%n, and LS^DME for NV-DME, with densities 
obtaiend from a converged self-consistent calculation of 208Pb with the SLy4 Skyrme 
EDF in the particle-hole channel and no pairing. 

5.4.6 Preliminary self-consistent tests 

In practical terms, one of the important benefits of the DME approximations is 

the fact that existing Skyrme HFB codes require minimal modifications to be used 

with EDFs obtained from the DME. Fig. 5.21 contrasts how a code is implemented 

for Skyrme HFB against one for the DME based functional. As can be seen the 

main change is in replacing the eventually constant Skyrme couplings, with density-

dependent couplings obtained from the DME. 

We carried out a limited set of self-consistent test to gauge the accuracy of the 

DME, in both full- and exchange-only-DME. In full-DME, both the Hartree and 

Fock contributions are approximated with the DME, while in exchange-only-DME, 

only the Fock contributions are approximated with the DME while the Hartree ones 

are treated exactly. In addition to confming the test to time-reversal invariant and 

spherically symmetric systems, there are several simplifying choices that we made. 
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(a) Skyrme-HFB code. 
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(b) DME-based HFB code. 

Figure 5.21: Comparison of Skyrme HFB and DME-based HFB codes. 

These are 

• We used the Brink-Boeker [193] force which has only a central component with 

gaussian form factors. The actual form and parameter values are 

Vc(r) = Y^ ai e-(rl2/»a)2
 +b.e-(r12/»br (5.113) 

i = l 

with fxa = 0.7fm and /xj, = 1.4/ra. The magnitude and range parameters in 

the four spin-isospin channels read 

Table 5.3: The Brink-Boeker force(Bl) 

n?n$ ngni n;nr ngnj 
389.5 389.5 801.6 801.6 

-140.6 -140.6 -3.82 -3.82 

Even though one usually adds a zero-range spin-orbit part to this interaction, 

this is not done in this work as our target is to compare the DME approxima-

tions, and a zero-range interaction is treated exactly in the DME. A complete 

self-consistent test of DME approximations should make use of modem NN in-

teractions that have central, spin-orbit and tensor components. In this regard, 
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building a local chiral interaction that has a low-momentum cutoff. and thus 

gives sensible HF results, will be useful. 

• We calculate only the total energy, and its components such as kinetic, Hartree 

and Fock eontributions of closed-shell nuclei: 1 60, 40Ca, 48Ca and 90Zr. The 

fact that we do nOt resolve the single-particle spectra (such as spin-orbit split

ting) prevents us from assessing the DME of sq(fi, s2) for spin-unsaturated 48Ca 

and 90Zr. Specifically the impact of the significant improvement in the DME 

of sq(f 1^2) brought by our PSA-DME is not yet gauged with self-consistent 

calculations. Additionally, we do not calculate the corresponding exact HF re

sults. Rather, we use results from Ref. [184] when we need to refer to exact HF 

results. 

Derivations related to the self-consistent numerical test are given in Appendix 9.8. 

For faster convergence of the calculations, we implemented both Broyden's [194] and 

iniaginary-time methods. Table 5.4 lists the results of the self-consistent calculations. 

At this point, we remind the reader that there are four densities that appear in the 

exact HF energy of time-reversal invariant systems: pq(fi,r2), sq(ri,?2), pq(?i/2) and 

Jq(r 1/2) (which appears only if the given NN interaction has a finite-range spin-orbit 

part). The second column show how the w—functions of these densities are fixed. 

Obviously, pg(fi/2) and Jq(ri/2) are not expanded in exchange-only-DME calculations. 

We start with the nonlocal densities. First, we have the labels NV-full and NV-

exc-only. The full and exchange-only labels should be self-explanatory. NV refers to 

fixing the ir—functions of pq{fi,r2) and sq(fi,r2) according to the original DME of 

Negele and Vautherin (Ref. [170]). PSA-II-exc-only use the parameterized versions of 

the 7T—functions of pq{f\, f^) and sq{r\, f^). The parameters that we used are the ones 

that we optimized for the non self-consistent test, while for pq{r 1/2), the parameters 

and 7T—functions are as discussed in the previous section ( 5.4.5). For the n—functions 
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of Jq(f 1/2), we use Taylor series as was done in Ref. [170]. 

Table 5.4: Full-DME and Exchange-only-DME for Brink-Boeker interaction and 
several DMEs 

not kin Dir Exch 

1 60 NV-full -6.204 13.948 

NV-exc-only -5.600 13.474 18.839 -37.914 

PSA-II-full -7.932 15.417 

PSA-II-exc-only -5.635 13.338 18.513 -37.487 

40Ca NV-full -8.526 16.822 

NV-exc-only -7.516 15.793 22.567 -45.878 

PSA-II-full -10.359 17.575 

PSA-II-exc-only -7.539 15.583 22.075 -45.198 

48Ca NV-full -7.447 16.678 

NV-exc-only -6.625 15.762 21.334 -43.803 

PSA-II-full -9.304 17.57 

PSA-II-exc-only -6.646 15.529 20.884 -43.062 

90Zr NV-full -9.339 18.778 

NV-exc-only -8.388 17.320 24.322 -50.041 

PSA-II-full -11.543 19.038 

PSA-II-exc-only -8.389 17.040 23.700 -49.140 

A complete self-consistent test should include the exact self-consistent HF calcula-

tion and the calculation of several other quantities such as matter, proton and neutron 

radii, proton and neutron densities. For the single-particle energies, the balance of 

Hartree to Fock contributions need to be assessed [184]. Still, our preliminary test is 

consistent with the main conclusion of Ref. [184], viz, the full-DME gives an excess 
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of 1 MeV per particle binding energy compared to exchange-only-DME, irrespective 

of the performed DME. The exact HF calculations given in Ref. [184] show that the 

error in the exchange-only-DME (compared to the exact HF of Ref. [184]) are much 

smaller than that of the full-DME. Consequently, one can obtain a significant reduc-

tion of the error in DME approximations by treating the Hartree contribution exactly 

as exact treatment of the Hartree contribution does not add to the numerical com-

plexity of the problem. Comparing the two DMEs, it can be seen that the difference 

between the exchange-only versions of NV-DME and PSA-DME-II is marginal, while 

for the case of the the full-DME version, there is a significant difference with NV-

DME being much closer to the exact HF results reported in Ref. [184]. This must be 

due to the strong parameter dependence and self-consistent error enhancement as the 

non-self-consistent percentage error from PSA-DME-II (which we called PI-DME) of 

the Hartree contribution, given in section 5.4.5 is less than that of NV-DME. This 

requires further investigation. 
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Chapter 6 

Non-Empirical Energy Density 

Functional from NN interaction 

In this chapter, we calculate the HFB energy from a generic two-nucleon interaction 

that contains central, spin-orbit and tensor components. Furthermore, we apply the 

DME to the HFB energy to obtain a local EDF. Analytical couplings of the particle-

hole (HF) part of the resulting EDF are calculated using the finite-range part of the 

chiral EFT two-nucleon interaction at bPLO. Following the usual convention, we 

represent momentum transfers with q. To avoid ambiguity, the isospin coordinates of 

the particles are labeled with r . 

6.1 The HF energy from an NN interaction 

Starting with a two-body interaction, the Hartree-Fock energy is given, in an arbitrary 

basis, by 

ENN = \ y E E ^J^\k^h''')(pkr>UrPlr'^r'-Pl^rPkr''jr)^ (6 .1 ) 
ijki TTtTitTm ^ ' 
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where {ITJT'\ V \kT"lr'") are non-antisymmetrized matrix elements of the two-body 

interaction and pir. / denote the one-body density matrix, as defined in Eq. (9.70). 

Because isospin is presently assumed to be a good quantum number, the density 

matrix is diagonal in isospin space, pkT//iT = pli ST//T. Thus Eq. (6.1) becomes 

E = 2 4 - 2^ (iriT'\v \kTlT') P* Pv ~ 2 2 . 2_, <*^ y l y l^'/r> ^ Pli- (6-2) 

Using the completeness relationship in the two-body Hilbert space 

y ^ y ^ \r1a1Ti;f2a2T2} {fia1T1-,f2a2T2\df1df2 = 1 , (6.3) 
CT1°"2 T 1 T 2 

and the definition of the density matrix in |f) <g> |ér) <g> \T) space as given in Eqs. (9.70), 

the HF energy can also be written as 

1 r 4 

E™ = 2E/n^^ i r i f 2 a 2 T 2 l^ 2 l r >3^r>4r 4 ) 
ar J j = l 

x p(f3cr3T3, ficriri)p(r4cr4r4, r2cr2T2) 
1 /* 4 

= 9T r i T r 2 / n ^ (rif2\V^y,n)p^\f^n)p^{n,f2), (6-4) 

where I/1 0 2 = V"(l — Pi2), with Pi2 being the particle exchange operator defined in 

Table 1.2. A matrix notation is used in the second equation and the traces, denoted by 

Tr, denote summation over the spin and isospin indices of "particle 1" and "particle 

2". The quantity p^(fj,fk) is defined in Eq. (7.12). As discussed in section 7.1 in 

relation to a similar calculation for the chiral three-nucleon interaction at N2LO, this 

notation makes the direct Mathematica implementation of the equations transparent. 

Refer to that section for details on this notation *. 

In this chapter, we eventually qualify all results for the finite-range (pion-exchange) 

1The calculations for the NN case are relatively much simpler thati for the NNN case. Conse-
quently, the complete HF + DME calculation was carried out manually in this case. 
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part of the chiral EFT twonucleon interaction at N2LO, which is discussed in sec-

tion 2.4.1. As the HF energy from the contact part is already in a quasi-local (Skyrme-

like) form, it does not require the application of the DME. Thus, we do not discuss 

it any further. The actual expression for the contribution to the EDF from the HF 

energy of the contact part can be found in Ref. [153]. 

The application of the DME to the HF energy requires expressing the HF energy 

in terms of the scalar/vector-isoscalar/isovector components of the OBDM in \r) ® 

\o) <S> I r) space. This is due to the fact that the DME, as formulated in section 5.2, 

is most intuitively expressed in that space. For its formulation in momentum space, 

consult Ref. [154]. Hence, we need to perform inverse-Fourier transformation of the 

chiral interaction given in Eq.(2.14). This results in 

( R Y \V\ Rf) = f [Vc(r) + Ti • T2Wc(r)] + [ Vs(r) + rt • r2 Ws(r)} ax • a2 

+ [ VT{r) + n-T2 WT(r) ] Sx • Ar a2 • Å r + %- [VLS{r) 

+ n • r2WLS(r)] (ai + a2) • (År ® KR) ) S(f- r') S(R - R') , 

(6.5) 

where R', R denote the center of mass coordinates, f', f are the relative coordi-

nates and V r and VÆ refer to gradients with respect to f and R respectively. The 

{Vc(r), Wc(r),...} denote the inverse-Fourier transform of the respective form factors 

given in momentum space [153] 

Vi(r) = J JtLe^Kiq) for i = C,S,T, (6.6) 

One should note that chiral interactions come with a regulator that cuts off high-

125 



momentum components. It should be noted that we have not included regulators 

in Eqs. (2.14), (2.16), (2.18) and (2.19). The commonly used regulators result in a 

non-local interaction since (A^A^ |V| kifø) which can also be written as (A;'|V|fc) is 

replaced with f(k'/A)(k'\V\k)f(k/A) for some momentum scale A, where f (k/A) —» 

0 for k » A and f(k/A) æ 1 for k <C A. In contrast, Eq. (6.5) shows that the 

|r) <S> |<r) <8> |T) space representation of the interaction given in Eq. (2.14), viz, without 

the regulator, is diagonal and depends on the gradient V with respect to f. The 

spin-orbit part in Eq. (2.14) is actually the only term that depends on V^. This 

dependence on V^ is usually remarked by referring to the interaction as quasi-local. 

In order to obtain a local interaction, one could use a regulator that suppresses large 

momentum transfers instead of large relative momenta. In any case, we neglect 

the regulator since we work at the HF level which samples only the low-momentum 

spectrum of the single-particle Hilbert space. This argument will remain valid as long 

as the local Fermi momentum kp <C A. 

6.1.1 HF contribution from a central interaction 

A local two-nucleon central interaction can be split into four different spin-isospin 

channels as 

V? = V?{r) S(n - r3) S(f2 - f4) n„. UT., (6.8) 

where i, j e{0 ,1} denote the singlet and triplet channels, V^(r) is the form factor 

and Ua. and UT. are the spin and isospin projection operators defined in Table 1.2. 
1 3 

For the chiral interaction given in Eq. (6.5), the form factors of the central interaction 

in the different channels is given by 

V£°(r) = Vc(r) - 3Wc(r) + Va[r) - 3Ws(r) , (6.9) 

VS\r) = Vc(r) + Wc(r) - 3Vs(r) - 3Wa(r) , (6.10) 
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Vé\r) = Vc(r) + Wc(r) + Vs(r) + Wa(r) , 

VS°(r) = Vc(r) - 3Wc(r) - 3Vs(r) + 9Ws(r) , 

(6.11) 

(6.12) 

where Vc(r), Wc(r),... are the coordinate space form factors given by Eq. (6.6)- (6.7). 

Starting from Eq. (6.4), the HF energy in the four different channels can be derived 

by replacing V with the corresponding interaction given in Eq. (6.8). The details can 

be found in appendix 9.6.1. For the spin-triplet and isospin-singlet channel, one has 

£™[10] = l E / ^ ^ VC°( r ) [ | Prin) PÅT2) + \ Pr(?U 5) fiffa fl) 

+ 2^(r*i) " Mfi) + -sT(f1,f2) • s9(f2,ri) , (6.13) 

while for the spin-singlet, isospin-triplet-channel 

^[01] = lYl j'dndf2VS\r) Pr{fi)pr{f2) + Pr(fl,f2) pT(f2,n) 

-Sr(fi) • ST(f2) - ST(fi, f2) • ST(f2,fi) 

+ IJ2 j ' dfidf2V»\r) ̂ Pr(fl)pf(f2) + ^pr(fl^f2)Pf(f2,fl) 

- S T (ri) • Sf(f2) - - S T ( f i , f 2 ) • S f (f2, fi) (6.14) 

The HF energy for the triplet-triplet and singlet-singlet channels read 

E»N[11] ^ / dfidf2V?(r) 3pr(ri)pr(r2) - 3pT(fi,f2)pT(r2,f1) 

+ sT(fx) • sT(f2) - sT(fi,f2) • sT(f2,fi) 

\Ys f dfidf2V?(r) 3 3 
-^Pr(fl)pf(f2) - ^Pr(f\-f2)pf(f2,f\) 

1 1 
(6.15) 
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and 

££"[00] =IJ2 [ dfl d?2 V°°^ 
1 1 
2 Pr (ri) pr (f2) - -^PÅn,^) pfif^n) 

(6.16) 
1 1 

- -^Srifx) • sf(f2) + -sT(fi,f2) • s?(r2,ri) 

The corresponding expressions for the finite-range part of the chiral NN interaction 

at N2LO can be found by utilizing Eqs. (6.9)-(6.12) in the place of the generic form 

factors Vl^(r). In time reversal invariant systems, the symmetry properties of the one-

body density matrix discussed in section 9.2.4 can be used to simplify the expressions. 

In particular, those terms that depend on the local spin density vanish as sq(r) = 0 

in this case. Finally, it should be mentioned that the channel by channel expressions 

for the central interaction agree with the unpolarized and symmetric infinite nuclear 

matter limit of the same expression given in [170]. 

6.1.2 HF contribution from the spin-orbit interaction 

A given quasi-local two-nucleon spin-orbit interaction can be split into its spin-isospin-

singlet-triplet channels as 

V& = - £ v ? s ( r ) S(n - f3) *(fi - f3) V • (a, + a2) Ila. UTj . (6.17) 

The spin-orbit orbit interaction vanishes in the spin-singlet channels \Xsingiet) = 

I /A /2 (ITJ,) - UT)) as S2 \xsingiet) = 0, with two-body spin operator S = (a1+a2)/2. 

For the chiral interaction given in Eq.(6.5), the spin-orbit form factors read 

Vl°s(r) = 2VLS(r) - QWLS(r) , (6.18) 

VH{r) = 2VLS(r) + 2WLS(r) . (6.19) 
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The HF contribution from the spin-orbit interaction in the spin-triplet and isospin-

singlet channel is given by 

E™[10] 
T J 

+ Z-Y,fdr1df2Vl°s(r) 

Jr{ri)pf{r2) + sT(?i) x jf(f2) 

sT(fi, r2)-fx V2Pf(r2,f1) 

+ Pr{rur2)f x V2 • sf(f2, f\) 

while in the spin-triplet and isospin-triplet channel, the result reads 

(6.20) 

E^\U] = ] = \Y,f' dndr2Vtl
s{r)r 

+ 

JT{ri)pr{r2) + Sr(fi) X JT(f2) 

sT(ri, f2)-fx V2pT(f2, fi) 

+ pAri,r2)fx V 2 -s r ( f 2 , f i ) 

4 J2 / dndr2VH(r)r- JT{f{)pf(f2) + sT(fi) x >(f2) 

4 X w rff>1 df2 VLSO*) sT(fi, f2) • f X V2Pf(r2j fi) 

+ /Or(ri, f2) f x V2 • sV(f2, fi) (6.21) 

The actual derivation is given in appendix 9.6.2. 

6.1.3 HF contribution from the tensor interaction 

A local two-nucleon tensor interaction in the four spin-isospin channels is given by 

V? = V?(r) Sin - f3) 6(f2 - f4) S12U(T. UT., 
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where S12 is the tensor operator given in Eq. (2.10). The tensor interaction acts only 

in the spin-triplet channels. This becomes obvious once S12 is written as 

S12 — 6 (S • f)2 — 2 S2, where the total spin operator, S, has zero expectation value 

in the spin-singlet state. Hence, concentrating on spin-triplet channels, the chiral NN 

interaction at N2LO given in Eq.(6.5) has the following components 

Yr (r) = - VT{r) - WT(r) , 

Vf(r) = l-VT{r) + ±WT(r) 

(6.23) 

(6.24) 

The HF contribution to the energy in the spin-triplet and isospin-singlet channel is 

given by 

Oo] = |EE/^^^V) 
T fxu 

ST* V 
Y^ ST,n(ri) Sf ,i/(f2) - ST(fi) • Sr (f2) 

H T^ Srøff^fty Sr^få,?!) - ST(fi,f2) • Sf(f2,fi) 

(6.25) 

while for the spin-triplet and isospin-triplet channel 

n̂n] = ^EE/^^^n(r) 
r jiu 

3ru,ru Sr,M(ri)sr,„(f2) - sT(ri) • sT(f2) 

3r„r„ 
ST,ti{n,r2)sT,u{f2,ri) 4- sT(ri,f2) • sT(r2,ri) 

+ iEE/^^r) 
T / i f 

3r„r„ 
sT,p(ri) Sr,v(r2) - sT(fi) • sf(f2) 

h— 5T;M(ri,r2)s f^(r2 ,ri) + sT(r1;r2) • sf(r2,r\) 

(6.26) 

Once more, the relevant expressions for finite-range part tensor part of the chiral NN 

interaction at N2LO can be obtained by making use of Eqs.(6.23)-(6.24). For time-
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reversal invariant systems, those terms that depend on the local spin density, sq(r), 

vanish. This recovers the expression derived in Ref. [170]. Refer to appendix 9.6.3 for 

details. 

6.1.4 Additional contributions to the HF energy 

In addition to the contributions to the HF energy that come from the starting NN 

interaction, there are several additional terms that are due to the kinetic energy, the 

center of mass correction and the coulomb interaction. The simplest is the uncorre-

lated kinetic energy associated with the reference product (HF) state 

E - # -
2m 

J2 f dfrT(r). (6.27) 

Since (HF) meanfield solutions are localized in space, translational invariance of the 

actual nuclear hamiltonian is broken. Consequently, one needs to correct for the 

center of mass motion, which can be done by defining an intrinsic Hamiltonian [38]. 

In addition to the the starting Hamiltonian, the intrinsic Hamiltonian contains a 

correction term EQM which reads 

EcM = 2A^~ = 2Mn ( 6 ' 2 8 ) 

where PCM — Ylk Pk ^s t n e s u m °f single-particle momentum operators and A is the 

number of nucleons and the |<3>) is the reference independent particle or quasi-particle 
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state. Expressing EQM in terms of densities, one obtains 

ti 
ECM — 

2Arn 

ti 
2Am 

T TT' 

Yl I I drdr'pT(r,r')TT,{r,r') ^ 2 9) 

+ 2Am ^ / / dffdf
 K*^'*") QT^^' 

TT 

Several comments are at play concerning such a correction to the the HF energy 

(i) the first term is a one-body center of mass correction with an overall effect of 

rescaling the kinetic energy term, Ekin (ii) the second term is really local and is zero 

if the single-particle states have a good parity, which we assume to be the case (iii) 

the non-local third term is the so-called two-body center of mass correction and is 

often omitted; if single-particle states have a good parity, the two coupled densities 

are labeled with opposite parities (iv) the non-local fourth term contributes to the 

pairing energy appears if one considers a reference independent quasi-particle state. 

It has never been considered in practical calculations [26]. If the single particle states 

have a good parity, the two coupled densities are labelled with opposite parities. In 

its full generality, such a term generates neutron-proton pairing. These nonlocal (the 

third and fourth) terms will be neglected in our application of the DME. 

The last correction arises from the Coulomb repulsion among the protons. It 

has both direct and exchange parts. The nonlocal exchange contribution is usually 

approximated with the slater approximation [155]. This is due to the fact that for the 

long-range Coulomb interaction, the simple slater approximation seems to perform 

at least as good as the DME techniques discussed in the previous section. Hence, we 

write the contribution from the Couloumb interaction as the HF energy reads 

= \e2 f f dr dr' ^ ^ - \ e2 (1\ ^ f dfp^tf . (6.30) 
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6.1.5 The lead ing-order pairing contribution 

The leading-order pairing contribution is obtained by calculating the expectation 

value of the interaction in a Bogoliubov quasi-particle vacuum. At this point, we 

enforce several restrictions: (i) we neglect proton-neutron pairing, hence no isospin-

singlet contribution. This is justified in most cases as the Ferini energies of protons 

and neutrons are quite different for most nuclei [38]. (ii) only central interaction is 

considered, as it is the 1S0 channel that exhausts most of the pairing contribution in 

nuclei, i.e. the contribution of other partial waves are negligible [117]. Leaving the 

details to appendix 9.6.4, the spin-singlet isospin-triplet contribution reads 

( « H V ^ I S W = 7 E / ^ i ^ 2 ^ 0 1 W | P x ( r l , r 2 ) | 2 , (6.31) 

while for the spin-triplet and isospin-singlet channel, we have 

( $ | V ^ | $ ) p a i r = ^J2 f dr 1 dr 2 V$(r) s*T(n,r2) • §T(ruf2) . (6.32) 

The Coulomb interaction has an important effect on proton pairing gaps [110]. Specif-

ically, its repulsive nature reduces proton pairing gaps (anti-pairing effect). To cal-

culate these contributions, one simply replaces the form factors, V^(r) and V ^ r ) , 

with the corresponding Coulomb interaction form factor. 

6.2 Application of the DME to the NN-HF energy 

In this section, we apply the DME to the HFB energy derived in the previous section 

to obtain a local EDF. In section 5.4.6, we have verified that the DME of the Hartree 

contribution is the main source of the descripancy between the DME-approximation 

and exact HF, thereby advocating the exact treatment of the Hartree contribution. 
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Still, for the sake of completeness, we apply the DME to all contributions of the 

HFB energy: Hartree, Fock and Bogoliubov. As the HFB energy is derived for a 

generic two-nucleon interaction, we perform the derivation of a local EDF using the 

modified-Taylor series detailed in appendix 9.5.7. As explained there, all available 

DMEs, including PSA-DME developed in this work, can be mapped in to this formal 

expansion. 

Since. the starting point is the strict Hartree, Fock and Bogoliubov contributions 

(diagrams), the energy functional is intrinsically a bilinear functional of p and K i.e. 

e[p, «, «•] = ep
k + ep/h + e£ + eZ + e^ , (6.33) 

where the right hand side corresponds to the uncorrelated kinetic energy, the particle-

hole (HF), the particle-particle (Bogoliubov/B), the center of mass and Coulomb 

corrections. The p and K exponents denote genuine, original dependence on the 

density matrices. To recap the steps for the application of the DME, first we replace 

the densities in the HFB energy with their formal expansion given in appendix 9.5.7. 

This is followed by the simplification of the expression using the angle independence of 

the 7T— functions and the relations among the ir—functions discussed in section 5.3.6. 

After neglecting terms with beyond second-order gradients, the particle-hole part of 

the EDF takes exactly the same form as given by Eq. (4.11), where in this case, the 

A/B couplings are functionals of the n—functions and the starting interaction. 

Through the DME, finite-range contributions of the starting interactions are en-

coded into density-dependencies of the EDF couplings. For instance, 

7T 
APP = 1 

2 
Jdrr2 [v$\r) ( t ø ( * F r ) ) 2 + (Hg(A;Fr))2) + 3V?(r) ( {np

0(kFr)Y 

-WkFr))' (6.34) 
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where we used the isoscalar kp as the DME length scale and suppressed the R de-

pendence of kp for brevity. It should be noted that due to the density dependence of 

the couplings, the usual integration by parts that is used in traditional Skyrme EDFs 

to reduce the number of independent terms can not be applied here. For instance, 

in conventional Skyrme EDFs, it is possible to convert the pAp term of the EDF 

into Vp Vp , thereby reducing the number of terms. Generally speaking, this is not 

possible in the previous case. 

The couplings depend on the central, spin-orbit and tensor parts of the interaction 

as follows 

Central - • { App, Ass, A^ , ApAp, Avpvp, AJJ , AsAs, AVsoVs, 

QPP Qss j^pr QpAp QVpVp QJJ gsAs gVsoVs \ 

Spin-Orbit - • {ApvJ , AvpJ , BpvJ, BvpJ} 

Tensor -> { AJJ , Ajj, AsAs, ,4 V s V s , AVsoVs, 

f}JJ RJJ D S A S r>VsVs nVsoVs i 

The complete expression of the couplings is given in appendix 9.6.5. 

In the particle-particle (pairing) channel, the application of the DME to the pair-

ing contribution results in a functional that is more complex than the usual phe-

nomenological forms, given in Eq. (4.16). It reads 

£pp [P,K,K*] = J2jdå App\pT(R)\2 + ApfpT(R)(Ap;(R)-4rT(R)) 

+ Apfp*T(R)(ApT(R)-4fT(R) 

+AJJJ2J;,»ÅR)JT,PÅR) 
pv 

(6.35) 
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where the AJJ terms originate from spin-triplet pairing while the rest originate from 

spin-singlet pairing. The actual expressions for all couplings is given in appendix 9.6.5. 

The EDF that results from the correction terms, namely, uncorrelated kinetic 

energy, center of mass and Coulomb corrections are simply given by 

k 2m 
T 

h2 

epp = 
cm 

'coul 

2Am 

J2 j dRrT(R) , 

J2 f dRrT(R) , 

= f dR \cppppPp + CpAppp APp + CVpVp VPp • Vpp 

(l) f dRp4/(R) , (6.36) 
Q / Q \ 1/3 
6e2 

where as noted in section 6.1.4, we have neglected the third and fourth terms of 

Eq. (6.29) while its second term vanishes due to the assumption of good parity for 

the single-particle states. For the Coulomb correction, we have applied the DME to 

the direct piece, while leaving intact the Slater approximation for the exchange part. 

The application of the DME to the Hartree contribution is given just for the sake of 

completeness. In fact, even the exchange contribution from the Coulomb interaction 

can not be treated accurately due to the long-rangedness of the Coulomb interaction. 

One can expect the DME of the direct part to be much worse. Still, we give the 

values for the C couplings in appendix 9.6.5. 

6.2.1 Analytical couplings from the chiral EFT NN interac

tion at N2LO 

There are three steps necessary to obtain the analytical calculation of the couplings of 

the local EDF derived in the previous section. First, we have to restrict the discussion 

to time-reversal invariant systems as the analytical forms of the 7r—functions for time-
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odd densities are not completely determined yet. This is discussed in section 5.3.6 in 

detail. The next two steps involve (i) fixing the interaction which in this case is the 

finite-range part of the two-nucleon chiral EFT interaction at N2LO. The respective 

use of the three-nucleon interaction is the subject of the next chapter. (ii) Specifying 

the 7T—functions. This can be PSA-DME, or any of the other available DMEs. In fact. 

using different DMEs results in different couplings, which is mentioned in section 8.2 

as a way to estimate the error of the DME couplings. In our case, we calculate the 

couplings for PSA-DME. A similar calculation can easily be done for the original 

DME of Ref. [170]. 

The derivation is discussed in appendix 9.6.6. As the final expressions are too 

lengthy, we discuss only the skeleton expressions of the couplings. For the more on 

the couplings, consult section 8.1 for a relevant discussion. The lengthy analytic 

expressions for the DME couplings tend to obscure their underlying structural sim-

plicity. Therefore, it is more illuminating to display the couplings in "skeleton form". 

Each coupling Ct is given by the sum of the LO (n = 0), NLO (n — 1), and N2LO 

(n = 2) contributions 

2 

C f ( u ) = £ Cg(u) i e {p\ pr, pAp,...} , (6.37) 
ra=0 

where the dimensionless variable u = kp/m^ and t = {0,1} is the isoscalar/isovector 

index. The fact that we express the couplings in terms of isoscalar/isovector no

tation instead of proton-neutron is for conformance with the notation used in the 

derivations related to the three-nucleon interaction. Refer to [156] as to why the 

isoscalar/isovector notation is more convenient in that case, and Eqs. (9.72)-(9.75) for 

the simple algebra relating isoscalar/isovector notation with that of proton-neutron 
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notation. Now, each coupling can be written as 

c$(«) = Yl 4](n> *• u)^(n'u) (6-38) 

where ctj (n, t, u) are rational polynomials in u and !Fj(n, u) are functions which may 

exhibit non-analytic behavior in u due to the fmite-range of the NN interaction. In 

the skeleton expressions listed below, we use a more compaet notation where the 

dependence of the a's on u, t, and n is not explicitly shown: 

• LO couplings 

C® = 4 ° + " ? log(l + 4M2) + af arctan(2w) (6.39) 

• NLO couplings 

C® = a« + 4 (*) J . «,(0 log(l + 2u2 + 2uVl + w2) 

+ Q j V l + «2log(l + 2M2 + 2 W l + u1) (6.40) 

ISPLO couplings 

C( i) = aj° + a[° log(l + w2) + a ? axctan(w) (6.41) 

6.2.2 Single-particle fields and equat ions of mot ion 

In appendix 9.7, we give the derivation of the single-particle fields and HFB equa

tions of motion that result from the variation of the Skyrme-like EDF given in 
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Eqs. (4.11),(6.35) and (6.36). Additionally, we give similar derivation for the case 

where the DME is applied only to the exchange part of the HF energy. As discussed 

in 5.4.6, all numerical tests are carried out for the case of spherical symmetry. Hence, 

we give the most simplified single-particle fields and equations of motion that result 

when spherical symmetry is imposed. Furthermore, the numerical methods used to 

solve the self-consistent spherical HF equations are also discussed. All this can be 

found in appendix 9.8. 
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Chapter 7 

Non-Empirical Energy Density 

Functional from Chiral EFT NNN 

Interaction at N2LO 

In this chapter, we calculate the HF energy from the chiral EFT NNN interaction 

at N^LO. Next, PSA-DME, formulated and discussed in chapter 4, is generalized in 

such a way that it becomes applicable to the N^LO chiral EFT NNN HF energy. This 

is followed by the application of this generalized PSA-DME to obtain a local ED F and 

the analytical calculation of the couplings. Additionally, we make several references 

to the actual symbolic implementation of the calculation. Again, following the usual 

convention, we represent momentum transfers with q. To avoid ambiguity, the isospin 

coordinates of the particles are labelled with r . 
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7.1 The Hartree-Fock energy from Chiral EFT NNN 

interaction at N2LO 

The consistent application of an MBPT calculation starting from a chiral EFT in

teraction, at a given order, requires utilizing all the components of the interaction: 

two- and many-nucleon interactions. As discussed in section 2.4.2, the leading three-

nucleon interaction appears at N2LO in the chiral expansion and it has three main 

pieces: the three-nucleon contact which is referred to as the E-term, the one-pion ex-

change plus contact (D-term) and the two-pion exchange which is called the C-term. 

In this section, we calculate the HF energy from these pieces of the NNN interaction 

and apply the DME to obtain a quasi-local EDF. 

Unlike the NN case, the algebra required to arrive at our final target, namely, a 

quasi-local EDF, is so complicated that one can simply rule out a manual derivation. 

This is due to the tremendous size of the algebra required in both layers of the 

problem. Firstly, we have to derive the exact HF energy in terms of the scalar/vector-

isoscalar/isovector parts of the OBDM. This has to be followed by the application of 

the DME to obtain the final quasi-local EDF. 

However, the whole problem displays several features that make it amenable to 

symbolic automation [151]: (i) it involves many similar and repetitive algebraic steps 

(ii) most of it does not involve numerical computation, and (iii) the part of it that 

seems to require numerical computation, such as multidimensional integrals, can be 

performed using a combination of analytic expansion and symbolic integration. In 

the following section, the HF energy from chiral EFT NNN interaction at N2LO 

is expressed in a form that makes the symbolic implementation transparent. The 

complete symbolic derivation is discussed in Ref. [156]. 
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Basic form of the HF energy 

A three-nucleon interaction can in general be decomposed as a sum of three terms 

VAN = V12 + V2Z + V13 , (7.1) 

where V^ is symmetric in nucleon i and j . Specifically, for the chiral EFT three-

nucleon interaction at N2LO, Vij depends on momentum transfers % and (fj and, in 

general, on the spin-isospin coordinates of the three nucleons. Refer to section 2.4.2 

for details. Starting with the HF energy from a three-nucleon interaction 

0 ® = l J2 fe'^3iv(l + PisPu + P23P12XI - Pi2)\ijk) , (7.2) 
ijk 

a few basic algebraic manipulations are in order to express the HF energy in terms 

of only one of the three V^ operators, e.g. V23, as 

O^f) - ^ ( y A r | V 2 3 ( l - 2 P 1 3 - P 2 3 + 2P12P23)|y*>, (7-3) 
ijk 

where Pim denotes the exchange operator (of particles / and m) defined in Table 1.2 

whereas i, j and k denote occupied HF single-particle states. Note that for ease of 

notation, we are using the single-particle basis that diagonalizes the one-body density 

matrix of the HF Slater determinant. 

One can identify three groups of terms in Eq. (7.3): direct, single-exchange and 

double-exchange terms1. The direct term corresponds to the expectation value of 

V23, the single-exchange term to the expectation value of V23(—2P13 — P23) and the 

1This should not be confused with one- and two-pion exchanges contribution to the three-nucleon 
interaction. 
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double-exchange term to that of 2 V23P\2P23 

Æ'dir> = l^imVnm, (7.4) 
ijk 

Æ ' l x ) = ^ ( u f c | t > 2 3 ( - 2 P 1 3 - P 2 3 ) | i j A ; ) , (7.5) 
ijk 

(V***) = ^(ijklVaP^P^ijk). (7.6) 
ijk 

As the derivation of the Skyrme-like quasi-local EDF from the exact HF energy 

requires the application of the DME, we need to express the HF energy in the \r) <g) 

I er) <S> I r) single-particle basis. Hence, we perform inverse-Fourier transformation of 

the interaction. This transformation leaves the spin-isospin dependencies untouehed. 

Furthermore, just as in the case of the NN interaction, the fact that the calculation 

is confined to the HF contribution enables us to neglect the regulator so long as 

kp « A, the momentum cutoff scale. The absence of the regulator makes the 

interaction local in coordinate space and simplifies the form of the interaction in 

\f) ® |c) <S> \T) space. Confining the discussion to the spatial dependence, we have 

{fif2rz\V2Z\r[r!f^) = 6(ri - r[) S(f2 - r^) S(f3 - f%) 

x V 2 3 ( r 2 - r i , f 3 - r i ) , (7.7) 

where 

V23(f2 - ri, r3 - n) = - i - j dq2dq3 e ^ - ^ ^ l ) e ^ ^ S ^ l ) V2Z{q2, q3). (7.8) 

At this point, we do not actually perform the integrals over the momentum co-

ordinates in Eq (7.8), except for the E-term of the interaction which is a trivial 

three-nucleon contact interaction, thereby yielding simple delta functions as shown in 

Eq. (9.347). Rather, Eq. (7.8) is used as it is, resulting in fifteen-dimensional integrals 
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in Eqs. (7.13)-(7.15). As discussed in section 7.2, the application of the DME prior 

to the actual multi-dimensional integrations is crucial. 

The next target is to rewrite Eqs. (7.4)-(7.6) in a form transparent for Mathemat-

ica implementation. We illustrate the steps required to achieve that with Eq. (7.6), 

for which we have 

(V™>2*) = J^(ijk\V23P12P23\ijk) 
ijk 

/

3 3 

HK „i „ „ „ ' ^ rn=l n = l ijk *i"'T3Ti"73 

x (f/icr/r/ rl2<y'2T2 rl3a^\V23P^ P^lriain f2a2T2 f3a3r3) 

x (ficriT! f2a2r2 r3a3T3\P[2P%3\ijk), (7.9) 

where we used completeness relations in the three Hilbert space 

E E/n 
r 1 . . < 7 3 T 1 . . r 3 1=1 

dfi |fi<Tiri f2a2T2 f3a3r3) {fiaiTi f2a2r2 r3a3T3\ = l , (7.10) 

and Pf£ = PfaPfa. We split the particle-exchange operator such that the coordinate 

part acts on the wave-functions while the spin-isospin piece is tåken care of along 

with the interaction. Let X» represent (rier,;^) such that the one-body density matrix 

reads as 

g(Xj,Xk) = Q(rj<JjTj, rkakTk) = ] P ip*(rk ak rk) <^(f} aj TJ) , (7.11) 
i 

where the sums is over occupied single-particle HF states. Making use of this, we 

define another quantity, which we call the auxiliary density matrix, as 

JiXj, Xk) = g (rjaM, rkain), (7.12) 
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where i e {1, 2, 3}. Basically, the spin-isospin coordinates of this quantity are those of 

the ith particle. Applying the steps demonstrated in Eq. (7.9) and using Eqs. (7.12), 

(7.7)-(7.8), one can express the direct, single-exchange and double-exchange parts of 

the three-nucleon interaction HF energy as 

rHF,dir 
(v™n = iTnTr 2 Tr 3 

^HF.lx rø* > = -TnTr 2 Tr 3 

J dndr2dfz g^Xx) Q2{X2) Q\X3) 

x V23(r2 - r i , f 3 - f i ) , 

f drxdr2df3 Q\XZ, X J ) g2{X2) g\Xu X3) 

x V 2 3 ( r 2 - r 1 , f 3 - f 1 ) P f 3
r 

(7.13) 

- - T r i T r 2 T r 3 
' / • 

dndT2drz Q\XX) Q\X3, X2) Q\X2I X3) 

xV23(r2-ri,r3-ri)P, ar 
23 

(V™n = TriTr.Tr, / dndf2df3 
/ • 

(7.14) 

QKXKXJAX^^AXUX*) 

xY23(f2-n,r3-n)P^P^ (7.15) 

where Ql(Xj) = Ql(Xj, Xj) and Tr̂  refers to tracing over spin and isospin coordinates 

of the ith particle. The key to understand the form of these equations is the splitting of 

the particle exchange operator, performed in Eqs. (7.9), that results in the spin-isospin 

coordinates of each particle to be grouped in a single auxiliary density matrix. These 

are the basic equations that are implemented directly in Mathematica. In Ref. [156], 

it is shown that the implementation of these equations is transparent, viz, directly 

interpretable to the language that Mathematica understands. This would not have 

been the case without the trick used to group spin-isospin coordinates of each particle 

in a single auxiliary density matrix, Eq. (7.12). 

The following sections state the contributions to the HF energy of time-reversal 

invariant systems from the E-, D- and C-terms of the chiral EFT NNN interaction 
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at N2LO. The complete expressions where the assumption of time-reversal invariance 

is relaxecl are given in appendix 9.9. Even for time-reversal invariant systems, some 

of the expressions are too long. In those cases, the expressions are relegated to the 

same appendix, where we also give the corresponding results for INM and PNM (pure 

neutron matter). 

Prior to delving in to the details of the expressions, the following observations 

can be made regarding the HF energy: (i) Each term in the energy expression should 

contain three local/nonlocal densities. (ii) As discussed in appendix 9.2.4, the various 

local and non-local densities that result from the one-body density matrix have specific 

time-reversal properties. Hence, considering that energy is a time-reversal invariant 

quantity, there can be no term that contains one/three time-odd densities. Note that 

at the level of exact HF, the only time-odd density that we have is the local spin 

density, sq(r). Nonetheless, the application of the DME extends this set to include 

all the time-odd densities that are discussed in appendix 9.2.4. (iii) The fact that 

the starting interaction is isospin invariant makes the energy isospin invariant as well. 

Therefore, there can be no term in the energy expression that contains one/three 

isovector densities. (iv) For each part of the interaction, there are the direct, single-

and double-exchange contributions as given by Eqs. (7.13)-(7.15). 

Finally, we remark that the HF expressions and the resulting quasi-local EDF from 

the chiral EFT NNN interaction at N2LO are given in terms of isoscalar-isovector no

tation instead of proton-neutron notation. In Ref. [156] where we discuss the Math-

ematica implementation, it is shown that the isovector-isoscalar notation is better 

suited to the implementation. Finally, keeping in mind that the NNN chiral EFT 

interaction at N2LO does not have isospin invariance breaking terms, the isospin in

variance of the energy expressions of both exact HF and quasi-local EDF become 

transparent in isoscalar-isovector notation. 
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HF energy from the E-term 

The actual operator structure and analytical form of the E-term of the chiral EFT 

NNN interaetion at N2LO are given in Eq, (2.16). The HF energy that results from 

it for time-reversal invariant systems is given as 

^ H / ' ™ 1 ) = -?-Ejdr(pl(r)-p0(r)pj(ri). (7.16) 

As expected due to its complete zero-range character, the HF energy from the E-

term is already in the form of a local EDF. Consequently, it does not require the 

application of the DME. It should be noted that the E-term has a direct counterpart 

in the Skyrme interaetion, Eq. (4.12). In most phenomenological Skyrme EDFs, the 

density dependence is in the form of Po(r) where 7 takes a fractional value [26], while 

the one that results from the E-term has 7 = 1. 

Three-nucleon contact interaetion requires the three nucleons to have the same 

coordinate f, which implies that three neutrons or three protons cannot interact via 

a contact interaetion, due to Pauli's exclusion principle. Indeed, Eq. (9.346) shows 

that VEN' ' vanishes for pure neutron matter and likewise for pure proton matter 

(though pure proton matter can not exist as it is not energetically stable). 

HF energy from the D-term 

The operator structure and analytical expression of the D-term of the chiral EFT 

NNN interaetion at N2LO are given in Eq. (2.18). Its contribution to the HF energy 

is nonlocal due to the finite-range pion-exchange part of the interaetion. In time-

reversal invariant systems, the HF energy contribution from the D-term takes the 

form 

/T /HF,D,TRI\ ~9Å CD 1 f ,-. ,-. f 1 , ^ iooiro-fo) % % 
{v™ > = mw,™ Jdridr> J w"*'3 J 2?r< 

147 



- 3 Spy Po(f2)p0(r2, r3)p0(f3, f2) 

+ 2 Sfh p0(f2)pi(f2, f3)pi(r3, r2) 

+ føy Pi(^2)po(^2, r-i)Pi(r3, r2) 

- 3 Po(r2)so(r2, ^)so(nj, r2) 

+ 3 e ^ e ^ p0(r2K(f2 , f3)^(^3, r2) 

+ Po(r2)sf (f2, r3)s7(f3, f2) 

- e a ^ e ^ p0(r2)5«(r2, f3)^(r3 , f2) 

+ 2 pi(r2)4(r2 , f3)s]'(f3, f2) 

- 2 eQ'^ ^ pi(f2)^(f2, f3)Sr(r3, r2) (7.17) 

The multi-dimensional integrals that occur in the HF energy are tackled only after 

the application of the DME. As can be seen, each term in Eq. (7.17) is composed of 

one local and two nonlocal densities. This can be traced to the fact the D-term of 

the interaction combines a contact term and pion-exchange interaction. 

HF energy from the C-term 

The operator structure and analytical form of the C-term of the chiral EFT NNN 

interaction at N2LO are given in Eq. (2.19). The HF energy from the C-term can be 

grouped into two categories: a D-like term and remaining terms (which we call R-

part). This grouping originates from the operator structure of F°j% given in Eq.(2.20). 
2 

The D-like term is associated with Sap [ —4 1 <f + 2 - | $ • cfj ] whereas the R-part 
S-K fff 

relates to - ^ e ^ r ^ &k • (Qi + Qj)- For time-reversal invariant systems, the HF energy 
fir 

contribution from the C-term is relegated to appendix 9.9.4 due to its length. Rather, 

out of line with the previous sections, the contribution of the C-term to the HF energy 
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in the particular case of symmetric INM is given by 

<vf/ÆiNM> = ( I £ ) Y J
 dfidf^ J ( 2 ^ ^ e^(nr?1) e%CrVrl) 

P\ 71 ,ciml 0 c 3 
-4—75- + 2 — g 2 • ?3 

Jir lir {<i + ml){ql + ml) 

- 2 ̂ l 7 l Po(ri)po(r3, f2)po(f2, r3) 

+ 5^71 Po(n, r3)po(r2, ri)po(r3, r2) 

_ 2^1 ^i7i^efl2T2" qpq? Po(n,r3)pQ(f2, n)p0(f3, f2) . (7.18) 

Even though the full complexity of the expression for time-reversal finite systems, 

let alone non-time-reversal systems, cannot be appreciated by analyzing Eq.(7.18), 

one can still make a few observations. To start with, the complete reduction of the 

expression to a local EDF requires calculating twelve dimensional integrals, after the 

application of the DME. This is due to there being three position and two momentum 

coordinates, while a local EDF allows only one position coordinate in the energy 

density. This is in contrast to the E-term contribution which is already in a local 

EDF form and the D-term where one has to calculate five dimensional integrals. The 

details of the DME technique used that preceeds the multi-dimensional integrations 

and the specific analytical and symbolic approaches used for the multi-dimensional 

integration are discussed in the next several sections. 

7.2 DME for the HF energy from chiral EFT N2LO 

3NF in time-reversal invariant systems 

In this section, restricting the discussion to time-reversal invariant systems, we ap-

ply the DME to the HF energy from chiral EFT 3NF at N2LO. In contrast to the 
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application of the DME to the HF energy from NN interactions, the task at hand is 

complicated by several factors. Firstly, the usual choice of DME-coordinates as the 

relative and center of mass coordinates, of the three-nucleons in this case. turns out 

to be of little use. Secondly, the HF energy from local NNN interactions in general 

depend on three-coordinates. This is also the case for NNN chiral EFT interaction at 

N2LO. Hence, there are two-nonlocality coordinates which should be integrated out 

in the final energy density. Finally, the complexity of the starting HF energy expres-

sion, even for the case of time-reversal invariant systems, renders manual derivation 

impractical. In order to mitigate these complexifying factors, it is imperative that we 

organize the HF energy expression in a systematic manner. 

Even though one has a large number of seemingly different terms coming from HF 

contribution of the C and D-terms of the NNN chiral EFT interaction, it is possible 

to group these terms into three generic classes. Note that the E-term results in a 

local EDF without the application of the DME, and thus we do not refer to it in 

this section2. This systematic organization of the HF energy is done with the aim of 

identifying the optimal DME-coordinate system. What makes this systematic organi

zation possible is the fact that, after the expansion of each local/nonlocal density, the 

DME requires only angle integrations irrespective of the nature of the densities in-

volved. Certainly, each density has its own n—functions, but this does not undermine 

the previous statement. 

7.2.1 Generic forms of the 3NF energy expressions 

There are only three generic forms that appear in the HF energy from chiral EFT 3NF 

at N2LO. These are listed in Eqs.(7.19), (7.20) and (7.21). In listing these expressions, 

the conventions used are that (i) all numerical and constant coefncients have been 

dropped, (ii) <^1, <^2, <^3 can be any of the scalar/vector, isoscalar/isovector densities, 

2Its contribution to the final contributions will be siraply added at the end. 

150 



(iii) the tensors 7V1 ø2-n and T^ 2 3 may not depend on //i,//2, or/x3, then that 

particular index is dropped from T. This is the case when the corresponding density 

is a scalar density, p0/i- F° r instance, if ^ is a scalar density, then the tensor 

T will not depend on /x2- Hence, it will take the form T^ \ or Tjj1 3 . This 

unconventional notation has been chosen to treat the scalar and vector densities with 

the same routine in Mathematica. 

Generic-Form-1 

The generic form of this group of terms is 

< K 5 T G 1 > 
01 71 

92 93 

x^l ( f i , f3)^2(r2 , r i )^3(f 3 ,F 2 ) , (7.19) 

where Ci,c2 and C3 are either zero or one. The double-exchange of the C-term (both 

D-like and R-part) is the sole origin of this type of terms. 

Generic- Form-2 

The generic form of this group of terms is 

<C> = / nam f au* «•fr"*"! wi»-'i> ffjl^l'^1 
x 10i ^i(fi)^2(f2 ,f3)^3(F3,F2) (7.20) 

where C\ and c2 are either zero or one. The single-exchange of the C-term is the origin 

of this type of terms. 
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G ener ic- Form- 3 

The generic form of this group of terms is 

0f/'G3> = / ' dr 2 dr 3 l 'd&e^-V - ^ ^ T ^ 

^l(f 2 )^2(f 2 , f 3 )^3(f 3 , r 2 ) . (7.21) 

The D-term is the only origin of this type of terms. 

7.2.2 The DME-coordinate system 

Most of the complexifying factors in the application of DME to the HF energy from 

the ehiral EFT NNN interaction at N2LO can be mitigated by the proper choice 

of a DME-coordinate system. There are several qualities that we require from a 

viable DME-coordinate system. As discussed in section 5.3.7, the expansion of local 

densities is problematic. Hence, the DME-coordinate system should reduce the need 

for the expansion of the local densities. The other quality required of the coordinate 

system relates to the need to have analytical expressions for the couplings of the 

resulting EDF. This is a requirement in so far as there is no apparent reduction in 

the accuracy of the whole approximation. Finally, and related to the previous point, 

the coordinate system should be such that the amount of mathematical manipulation 

required to arrive at the final result is manageable. 

These requirements rule out the usual relative and center of mass coordinates of 

the three-nucleon system. Likewise, the three-body Jacobi coordinates are found to 

be non-optimal. Rather, the coordinate system that we use is 

X2 = r2 - n 

£3 = f 3 - n 
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r i = f i , (7.22) 

which implies that we are expancling about the coordinate of the first particle, f\. 

While this choice is directly applicable to generic forms given in Eqs. (7.19) and (7.20), 

for that of Eq.(7.21), one simply sets f\ = f2 which results in x2 = 0. The main ad-

vantages of this coordinate system are: (i) It allows exact integration of the factors 

resulting from the interaction, with any approximation being confmed to the expan-

sion of the densities. This implies that this work can be modified and/or extended 

by simple modification of the expansion of the densities. This point is discussed in 

section 9.10.1. (ii) The chosen coordinate system enables one to apply the DME only 

to the nonlocal densities that occur in the HF energy expression. 

7.2.3 Generalized PSA-DME 

Using the coordinate system specified in Eq. (7.22), the non-local densities that appear 

in Eqs. (7.19)-(7.21) are of the form ^ l ( f i , f i + x3), <f2{fY + x2,n) and ^3(fi + 

£3, fi + x2). These non-local densities can be scalar/vector, isoscalar/isovector. The 

generalized PSA-DME aims at approximating each of these non-local densities in 

terms of local densities, dependent on ri, and ir—functions which can depend on x2 

and/or x3. 

A detailed discussion on the generalized PSA-DME of these nonlocal densities is 

given in appendix 9.5.3. Reproducing the main results, the PSA-DME of the nonlocal 

densities that occur in the HF energy from chiral EFT three-nucleon interaction at 

N2LO take the form 

pq(?i, n + £2) = i rø* 2 ) P,(fi) + ^ nS(4*2) ( \ Ap.in) - ^(ri) 

+ | ^ 2 p , ( r i ) ) , (7-23) 
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with the same form holding for pq(f\,f\ + x3). From the time-reversal property of 

the scalar part of the OBDM stated in Eq. (9.85), pq{ri + x2,¥i) = pq(fi,fx + x2). 

Hence, their DME can be obtained from Eq. (7.23). The DME of pq(fi + x2, f\ + x3), 

which involves two nonlocality coordinates, x2 and x3, is given by 

pq(n + f2, n + x3) = Up
0(k

q
Fx)(pQ(n) + X• VlPq(n) + \(X-Vi)2

Pg(?i)\ 

+ ^ T%(k<Fx) ( (a2 - a + i ) Apq(n) - rq{n) 

+ lkF
2pq(n) ) , (7.24) 

—* —* 

where the coordinates x and X are given by x — x2 — x3 and X = (1 — a)x2 + 

ax3. For a discussion on the DME-coordinate optimization parameter a, refer to 

appendix 9.5.3. The same form holds for its time-reversal counterpart pq{f\ + x3, f\ + 

x2). The 7T—functions that occur in both Eqs. (7.23) and (7.24) are given by 

Up
0(kFy) = 3 J - ^ - = Up

2(k
q
Fy). (7.25) 

The corresponding expansions for the vector part of the OBDM are given by 

sq,„f ri , f + £2 J - iTi.f(kq
Fx2) J2 X2-M J<iMri), (7.26) 

fl=X 

sg,Jfi + x2,r + x3) ~ iUf(kq
Fx) J2 x» J^Ån), (7.27) 

^ /z=x 

where the ir—function occurring in Eqs. (7.26) and (7.27) is given by 

h(kq
Fy) 

kq
Fy 

n f f ø y ) = 3 ^ ^ . (7.28) 

kp as given in Eq. (5.37). A similar expansion holds for sqtV(r\,r + x3). Using 

the time-reversal property of the nonlocal vector density as given in Eq. (9.85), the 
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expansions for sq,v(rx + x2,ri), %„(ri + f 3 , r i ) and sq^v{f\ + f3 ,n + x2) can easily 

be generated from Eqs. (7.26) and (7.27). 

Infinite nuclear matter limit 

The generalized PSA-DME, just like the PSA-DME developed in section 5.3, is exact 

in INM. Since s*9(ri + X2,ri + £3) = 0. in spin-unpolarized INM, we consider only 

the scalar part of the density matrix. In INM, it is given by 

pq(fi,n + x2) = s^^-p.in), (7.29) 

Pq(n+x2,f1 + x3) = 3Jl^l?3~ffPq(n), (7.30) 

which can be recovered exactly from Eqs. (7.23) and (7.24) by noting that Vpq(f) 

and Apq(f) vanish in INM and Tq(f) — \kq^pq(r). This implies that in the application 

of the DME to the HF energy from chiral EFT NNN interaction at N2LO results in 

a local EDF which will reproduce the exact HF energy with no discrepancy. The 

previous statement holds as long as the DME is the only approximation in the whole 

set of steps followed to obtain a local EDF. As discussed in section 7.2.2, this is one 

of the benefits of the adopted DME-coordinate. 

7.2.4 The resulting EDF 

The application of the generalized PSA-DME given in the previous section to the 

exact HF energy from the chiral EFT three-nucleon interaction at N2LO, followed 

by a set of mathematical steps that mostly involve angular integrations, results in a 

local EDF. Yet again, the complexity of the algebra required to arrive at the final 

simplified form of the EDF rules out manual derivation. Hence, we automate the 

derivation using Mathematica. The main ingredients of the symbolic derivation of 

the EDF are given in appendix 9.10, while the complete derivation can be found in 
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Ref. [161]. 

In the symbolic derivation of the EDF, the analytical PSA-DME expressions of the 

nonlocal densities given in Eqs. (7.23), (7.24), (7.26) and (7.27) are replaced with 

their symbolic counterparts. Even though this might seera an irrelevant technical 

detail of the actual implementation, it is important in the following respect. We have 

mentioned that, once nonlocal densities are approximated by their DME counterparts, 

the DME-coordinates f\, a?2, £3 allow for the exact simplification of all components 

of the exact HF expression. This implies that any disagreement between the exact 

HF energy and the corresponding EDF can be reduced by further optimization of 

the DMEs of these nonlocal densities. In line with this, we develop a very general 

symbolic DME ansatz and one can consider the generalized PSA-DME discussed in 

the previous section as a specific realization of this symbolic DME ansatz. Refer to 

appendix 9.10.1 for detail. In this way, future improvements to the DME can be 

automatically implemented in the current approach. 

There are several strong points about this symbolic derivation: (i) The couplings of 

the EDF are functionals of the 7r—functions. Consequently, by fixing the n—functions 

according to some analytical DME scheme, one can generate the corresponding cou

plings of the EDF. In the next section, we discuss how we obtain the analytical 

couplings for our choice of the n—functions according to the generalized PSA-DME. 

(ii) The automation of the whole task enables us to keep all the higher-order terms 

(up-to-sixth order) in the EDF. Note that only even orders occur in th EDF i.e. the 

occurrence of terms with one, three or five derivatives is precluded by the requirement 

of rotational invariance, as energy is a scalar quantity. The complete EDF, includ-

ing all the higher-order terms, is reported in the Mathematica files accompanying 

Ref. [161]. The usual truncation of EDFs at second-order in gradients is mostly due 

to the complexity of numerical techniques to solve an equation of motion with beyond 

second-order gradient terms. Recently, there have been several efforts geared towards 
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ineorporating higher order terms in the EDF [35]. In appendix 9.10.4, we report the 

EDF by including terms up to fourth-order gradients. 

At this point, the result of this work is being utilized along with phenomenological 

extensions. This is diseussed in section 8.1. As terms with at most second-order 

gradients are the ones being used in the referred work, here, we report the form of 

the EDF by truncating it at second-order, with the added assumption of spherical 

symmetry, 

-3NF,2 Jdf{cplpl(r) + Cp0pl p0(f) pl(r) + CpiTOpl(r-)ro(r) 

+ ClT0 p\{f) r0(r) + CWin Po(f) Pl(r) n(f) 

+ C^POVO p0(f) Vpo(r) • Vpo(f) 

+ cpovn*n Po(f) vPl{r) • Vpi(f) 

+ C1v«Ov"ipi(f)Vpo(»0-Vpi(f) + Cp0Ap0 p2
0(r) Ap0(r) 

+ CplAp0 PHf) Apo(r) + CWlA"l po(r) Pl(r) AP l(r) 

+ Cp0JQ po(f) Jo(f) • J0(r) + Cp0Jl p0(r) J^r) • Jx(r) 

+ C'lJ0-'lp1(f) J0(r)- Ji(r) + C"0^0JOp0(f)Vpo(r)-/o(r1 

+ Cp0vnJl Po(f) Vpi(f) • Ji(r) + C l W l po(r-) vpo(r) • Ji(r) 

+ Cpl^lJ0 p0(f) Vpi(f) • Jo(f) + Cp0VJ0 pg(f) v . J0(fO 

+ C p l V J O p 2 ( r l ^ . / o ( r 1 + C p 0 p 1 v j l p o ( r - ) p i ( r - ) y . / i ( r 1 I 

(7.31) 

where C?l?2f3 are the couplings of the EDF. Note the explicit isotopic symmetry of 

the functional as each term contains an even number of isovector densities. 
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Comments on the second-order truncation for spherical systems 

Even though all higher order terms in the resulting EDF (up to sixth order) can be 

used in the future, currently only up to second-order terms are being considered in the 

UNEDF implementation of this work as described in section 8.1. Numerical tests per-

formed in section 5.4 confirm that the higher order terms generated by the DME are 

much smaller than the leading order terms. Still, it is important to ask which terms 

will be missing when truncating the resulting EDF at second-order. This is especially 

important for the tensor and spin-orbit pieces of the functional as current phenomeno-

logical EDFs show significant deficiencies in that respect [[109],[159],[158]]. It is also 

well known that the two-pion exchange part of the three-nucleon interaction plays a 

significant role in the spin-orbit splittings of atomic nuclei [154], further increasing 

the importance of reproducing the exact HF energy with the DME approximation. 

Consequently, we analyze what the practical second-order truncation entails for 

terms in the exact HF energy that contain the nonlocal spin density, So / i^ j^ ) ; as 

these are the possible origins of tensor and spin-orbit terms in the resulting EDF. 

The assumption of time-reversal invariance sets sb/i(r) — 0, meaning we have to 

consider only nonlocal spin densities. In addition, the analysis is done when the 

DME adopted is the generalized PSA-DME, instead of the more general symbolic 

DME ansatz described in appendix 9.10.1. The key difference between the two, for 

the purpose of the following analysis, is the fact that the DME of the nonlocal spin 

density does not involve the gradient, V^ J„, and the laplacian, A Jv. corrections in the 

generalized PSA-DME while the symbolic DME ansatz contains such terms. Noting 

that the isoscalar/isovector label does not matter in the following analysis 

• Generic-Form-1 (Eq. (9.406)) - here either one, two or all three of the nonlocal 

densities, viz, «^(f^rvj), ^ ( ^ r i ) , ^3(^3,r2) can be nonlocal s0/i- Starting 

with one of them being nonlocal s*0/i, the terms that are not considered during 
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second-order truncation include fourth-order terms only such as Vpo/i • Jo/i ^o/i-

A similar analysis for the more general symbolic DME ansatz shows that there 

are neglected sixth-order terms in this case, as the DME of nonlocal SQ/I include 

corrections from gradient and laplacian of J0/i- When two of the nonlocal 

densities are nonlocal s*0/i> there are again only fourth-order terms such as 
—* —* 

To/i JQ/I • Jo/i. The case is much simpler when all the nonlocal densities are 

the nonlocal SQ/I- The contribution of these terms to the EDF vanishes, as 

one cannot form a scalar by picking three spin-orbit densities from the set 

containing just two elements: (J0, Ji). Hence, the truncation does not introduce 

any missing terms when all the nonlocal densities are nonlocal SQ/I- A similar, 

but more complex, analysis can be done for the case of the symbolic DME 

ansatz. 

• Generic-Form-2 (Eq. (7.20)) - here either one or both of the two nonlocal den

sities, viz, «^(f^, F3), ^3(^3, f2) can be nonlocal s*0/i- Starting with one of the 

them being nonlocal SQ/IJ there are no terms that are not considered due to the 

second order truncation. This can be realized from the fact that the local den-

sity <^1 (fi) is not expanded and the only gradient terms come from the DME of 

the other nonlocal density. However, we have only up to second order gradients 

in the expansion of the other nonlocal density, of which only the first order term 

(along with J of the nonlocal s0/i) contributes to the EDF. This is due to the 

requirement of rotational invariance. Hence, there are no terms that contribute 

to the tensor/spin-orbit part of the EDF and are beyond second-order in gradi

ents. When both nonlocal densities are nonlocal s0/i, the only EDF terms that 
—* —* 

result are of the form p0/i Jo/i • Jo/i-, which contain only second-order gradi

ents. Consequently, the second-order truncation does not result in any missing 

tensor/spin-orbit terms from terms of Generic-Form-2. 
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• Generic-Form-3 (Eq. (7.21)) - a similar analysis shows that the same conclu-

sion as in the case of Generic-Form-2 holds. In ot her words, the second-order 

truncation does not result in any missing tensor/spin-orbit terms. 

Concluding, the above analysis shows that, for the generalized PSA-DME, truncating 

at second-order keeps most, if not all, of the important spin-orbit/tensor terms of the 

resulting EDF. In fact, the few missing higher-order terms are fourth-order terms 

from Generic-Form-1. These terms can be expected to be absorbed in the part of the 

couplings that are phenomenologically fit. Refer to section 8.1 for detail. The above 

analysis can simply be extended to non spin-orbit/tensor terms of the EDF. 

7.3 Analytical Couplings from the chiral EFT NNN 

interaction at N2LO for time-reversal invariant 

systems 

In this section, the general analytical structure of the couplings is discussed. As 

discussed in section 5.3.5, we use the isoscalar &F instead of kq
F in order to obtain 

isospin preserving EDF. Starting from Generic-Form-1, given in Eq. (9.406), it can 

be seen that the application of the DME to the nonlocal densities results in couplings 

of the form 

dx2 dx3 dq2 dq3 F^fo, x2,x3, q2, q3), (7.32) 

where CQF\ 3 denotes the couplings obtained from the application of the DME to 

Generic-Form-1 type terms. In this equation, F\ is in general separable in q2 and q3. 

but not in x2 and x3. This is due to the fact that the sole origin of the momentum 

transfer coordinates, q2 and q3, is the interaction where they already occur in separable 
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form, while £2 and x3 remain coupled even after the application of the DME. This 

in turn is because of the ir—functions associated with <^3(fi + :r2,f*i + x3), as given 

in Eqs. (7.25) and (7.28). A similar analysis shows that the couplings from Generic-

Form-2 given in Eq. (7.20) take the same form as Eq. (7.32). The form of the couplings 

from Generic-Form-3 is simpler and it reads 

C G F P ~ J dx3 dq3 F3(kF, f3, g3) • (7-33) 

In general, direct, exact and analytical integrations of couplings of the form 

Eq. (7.32) that require twelve-dimensional integration is a hopeless task. Even for 

couplings of the form given in Eq. (7.33) and a few other cases where there is a com-

plete separation between terms dependent on (#2, qV) and (x3, q3), in general we have a 

product of three spherical Bessel functions in addition to exponential and polynomial 

prefactors for each group, i.e. for those dependent on (x2, Q2) and those that depend 

on (X3, qz). In general there is no known analytical method to calculate these types of 

integrals, further complicating the problem. One can thus envision doing numerical 

Monte-Carlo integrations, thereby resulting in non-analytical/numerical couplings. 

However, the resulting lack of elegance and inconvenience for systematic study of the 

couplings convinced us to invent a combination of analytical and symbolic methods to 

integrate these couplings analytically. The symbolic and analytical procedures used 

for the analytical calculation of these couplings are discussed in appendix 9.11. In 

this regard, Gegenbaur's addition theorem which is detailed in appendix (9.1.5) and 

tested in appendix(9.11.3) plays a significant role. 

The simple analytical structure that emerges for all the couplings of the EDF 

reads 

C*l<2<3 [u] = Cl1"2"3 [u] + Cl1"2"3 [u] ln[4tx2 + 1] + Cg1 '2 '3 [u] arctan[2«], (7.34) 
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where Ci are polynomial functions of u. The variable u, which is also used in 

section 6.2.1, is a dimensionless quantity given by 

„SMå, (7.35) 

where we explicitly show the R dependence of kp(R) to emphasize that the couplings 

are functions of density/position. Note that in writing Eq. (7.34) for C^l^^Ju], we 

have dropped coefficients that appear in front of C{ . These coefficients are given 

in terms of the interaction parameter, m^ and kp (R). This can be seen from the 

requirements of the dimension of the couplings. For instance, Cppp needs to have 

MeV (fm)9 dimension. Finally, we remark that the variable u stays predominantly 

within u e [1.0, 2.0]. For this, we used kp « 1 . 4 fm'1 inside the nucleus and half that 

value out in the surface, while m^ ss 0.7 fm'1. For the actual analytical forms of 

the couplings, consult Mathematica files of Ref. [161]. 

Comparison of analytical and Monte-Carlo results 

We mentioned that the combination of analytical and symbolic approaches have en-

abled us to calculate the couplings of the EDF analytically. The calculation of the cou

plings from Generic-Form-1 and Generic-Form-2, given by the generic form Eq. (7.32), 

relies on Gegenbaur's addition theorem of Bessel functions followed by the symbolic 

approach that we invented for this purpose. In contrast, the integration of the cou

plings from Generic-Form-3, denoted by the generic form Eq. (7.32), do not require 

the use of Gegenbaur's addition theorem. Rather, they are calculated directly using 

the symbolic approach. Refer to section 9.11 for details. 

Gegenbaur's addition theorem is exact only if it is not truncated at a finite or

der. Since we are forced to truncate the expansion at a finite order, this calls in to 

question the accuracy of the couplings which are calculated using this approach. In 
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appendix 9.11.3, we discuss the accuracy of a truncated Gegenbaur's addition theo-

rem, where we show that including at least the first five terms of the expansion gives 

a practically exact expansion. In this section, we test the impact of this truncation 

by comparing the loeal EDF that results after the application of the DME with the 

exact HF energy from chiral EFT NNN interaction at N2LO. We perform the test for 

symmetric INM, where in principle we should have exact agrement. 

The exact INM HF energy contribution from the chiral EFT NNN interaction, 

given in appendix 9.9, can be written in terms of Eqs. (7.29) and (7.30) as 

(V3T
E'mM) =-f~6E f dflPl(n), (7.36) 

which is already in local form and does not need any DME. For the D-term, we have 

{VHF.AINM> = Jdnci^pKn), (7.37) 

where 

CJ,NU = J ^ f f di, df3 e%'-3 - * fe! M * ^ j ) . ( r a ) 
D.1NH - 5 1 2 x s / 4 A l J * ™ ql + m* kFx3 kFx, ' 

Note that, in this formula kp = kp{fi) = [3/27r2p0(^i)]1//3; using the isoscalar den-

sity. This coupling can be integrated analytically without the application of Gegen-

baur's addition theorem and thus we do not discuss it further. The C-term contributes 

/T /HF.C,INM\ _ /T/HF,CD1X,INMX , /T/HF.CD2X,INM\ 
\VZN I — \VZN I + \VZN I 

+ {V^R2X^M) (7.39) 

/ 
dnCc°INMpl(n), (7.40) 
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where 

^C.INM — ^CDlxJNM ^ ^CD2x,INM ^ uR2x,INM " K'-*1-) 

We have separatecl the three different contributions to the coupling in Eq. (7.41). As 

discussed in section 7.1, the C-term of the chiral EFT three-nucleon interaction at 

N2LO has what we call the D-like and R pieces. In the coupling shown in Eq. (7.41), 

the first two terms of the couplings are from the single- and double-exchange parts of 

the D-like piece, while the last one is from the double-exchange part of the R-piece. 

These are given by 

Cc°mx,INM = " l o i ^ ( ^ ) j dx2dx3dq2dq3e^s2e^3 

^i7i?2 % f cnni 9c3 

(Ql + mlM + ml) V fl f* 
ji(kF\x3 - f2 | ) ji(kF\x3 - x2\) 

kF\x3~X2\ kF\x3~X2\ 
2 

(7.42) 

Cc°D2X,INM = I ^ ( H ) / dx2dx3dq2dq3e*2S2e^£3 

ji(kFx2) ji(kFx3) ji(kF\x3 - x2\) 

kFx2 kFx3 kF\x3 — x2\ 
„3 9/f} / r, . \ 2 

(7.43) 

C&XJNM = ~ l | ^ ( f £ ) % j dx2dx3dq2dq3 é*2*2 e^B 

P\ i\ P<i 72 
Q2 93 ?2 93 J ^ l " ,0272" 

(ti + mlM + ml) 
xh(kFx2) ji(kFx3) ji{kF\x3 - gal) ^ u , 

kFx2 kFx3 kF\x3 — x2\ 

As can be seen from Eqs. (7.42), (7.43) and (7.44), all of them require the appli

cation of Gegenbaur's addition theorem. This is due to the occurrence of ji(kF\x2 — 

x3\)I(kF\x2 — X3I) in these terms that are not separable in x2 and x3. The numer-
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ical test discussed in appendix 9.11.3 shows that we can truncate the Gegenbaur 

expansion of this term at fifth order as 

ji(kF\x3 - x2\) /lii" T(3/2) o , 3 . 

M.x3-f2i * V"Ti5^^§('1 + 2 ) j ' l + l ( * j Æ a ) ^ l ( f c F X 8 ) 

x C*/2(cos(0)), (7.45) 

where 0 is the angle between x2 and £3 This is followed by analytical integration 

of the couplings. Furthermore, one notes that Eq. (7.42) requires the application 

of two Gegenbaur expansions while Eq. (7.43) and (7.44) require the application 

of only one Gegenbaur expansion. To assess the accuracy of the couplings/EDF in 

Eq. (7.39) when calculated with the truncated Gegenbaur expansion, we compare 

the result with the case when the couplings are calculated with the essentially-exact 

Monte-Carlo integration (without Gegenbaur expansion). 

In Fig. 7.1, we show the percentage error of the Gegenbaur-based calculation 

with respect to the Monte-Carlo ones, for the contribution of the three terms of 

Eq. (7.39) to the energy per particle of INM as a function kp- For each of the 

three terms, we have two curves where the insets show the actual contribution to the 

energy per particle when the couplings (Eqs. (7.42)- (7.44)) are calculated analytically 

with the truncated Gegenbaur addition theorem, at fifth order, and the lower curves 

(main curves) represent the percentage errors. The constants of the chiral EFT 

three-nucleon interaction that are used in this particular calculation are specified in 

Table 2.2, with he = 197.327 [Me V fm]. 

The results show that, the percentage error resulting from truncating the Gegen

baur expansion is less than 0.5% over the range of physically interesting kF values. 

In fact, for the double-exchange from the D-like and R pieces, the percentage error 

shows a strong fiuctuation between 0 and 0.5%. For the single-exchange from the D-

like term, the percentage error shows a steady increase from 0 to about 0.3%, which 
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is not surprising as we needed to apply Gegenbaur's addition theorem twice in that 

case. Considering the unavoidable numerical errors/flucuations in the Monte-Carlo 

calculation and the smallness of the percentage errors, obtained we can conclude that 

the truncation of Gegenbaur's addition theorem at fifth order provides a practically 

exact truncation. At this point, one should realize yet another reason for the need to 

automate the whole calculation. Le. the application of Gegenbaur's addition theo

rem replaces each term in the couplings with about five terms when truncated at fifth 

order. For instance, in the integration of Eq. (7.42), the single Monte-Carlo integra-

tion is replaced with about 25 integrals due to the double-application of Gegenbaur's 

theorem. Hence, even though it enables us to obtain completely analytical couplings, 

Gegenbaur's addition theorem comes with a tricky overhead: about two orders of 

magnitude increase in the number of integrals to be calculated. Finally, we remark 

that the conclusion of this section, viz, the truncated Gegenbaur's addition theorem 

enables us to calculate the couplings in a practically exact manner, holds for all other 

couplings as the truncated Gegenbaur expansion is the only "approximation" that 

goes into the calculation of the couplings. In the next chapter, besides the possible 

future extensions and conclusions, we perform preliminary analysis of the couplings 

and the ongoing semi-phenomenological approach that is attempting to make use of 

this work. 
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Chapter 8 

Semi-phenomenological EDF, 

Fut ure Extensions and Conclusions 

8.1 The semi-phenomenological approach 

Based on the arguments discussed in section 5.1.1, we advocate a semi-phenomenological 

approach in which the phenomenological Skyrme functional is to be augmented with 

the DME-mnctional. Here, DME-functional refers to the EDF that we obtained 

from the application of the DME to the Fock energy contributions of finite-range 

NN and the complete HF of finite-range NNN chiral EFT interactions at N2LO. In 

this scheme, the Hartree contributions from the NN part are to be treated exactly. 

Finally, the phenomenological Skyrme parameters are to be re-fit to INM and finite 

nuclei properties, leaving those couplings/terms that originate from the DME intact. 

Actually, the so-called phenomenological Skyrme parameters can also considered to 

have originated from the contact part of the chiral EFT NN and NNN interactions. 

The generic structure of EFT interactions given in Eq. (2.12), VEFT = K- + Vct(A), 

shows a clean separation between long- and short-distance physics. Consequently, 

each DME coupling at the HF level can be decomposed as the sum of a density-
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independent, A-dependent piece, which are subsequently re-fit, coming from the con-

tact terms of the EFT NN and NNN (E-term) interaction (Vct(A)) and a density-

dependent, A-independent piece coming from the finite-range pion exchanges 

cr2 = cr2(A;vct) + ti^&vj, (8.i) 
c ? w = cr^H^v^ + cr^^K), (8.2) 

where <Ji q2 and <Ti Q 3̂ are bilinear and trilinear combinations of densities that occur 

in the EDF [[153], [160]]. 

In this sense, the re-fit parameters can be viewed as containing the effects of 

the HF contribution from the contact interactions, Vet, phis higher order effects that 

would arise in a more sophisticated Brueckner-Hartree-Fock or 2nd-order MBPT cal-

culations. In this regard, through the loose connection of the refit Skyrme parameters 

to the EFT contact terms, the EFT concept of naturalness might provide useful the-

oretical constraints for the fitting procedure [163]. 

The following several plots show sample Cf1 2. As can be seen from fig. 8.1, the 

novel density-dependence is controlled by the long-range parts of the NN interaction. 

Therefore, it is not surprising to see that the density profile of the couplings shown in 

the figures is driven by the LO term (one-pion exchange) since the NLO and N2LO 

interactions are of shorter two-pion exchange range. Even though the couplings in 

fig. 8.1 seem to satisfy the hierarchy requirement, viz, LO > NLO > N2LO, it is 

not guaranteed that this will always hold. This is because we are including only HF 

contributions to the couplings, with our focus being primarily on finite-range pieces. 

The fact that the hierarchy might not be maintained should not seem to be a big 

problem as HF amounts to comparing the LO, NLO, N2LO potentials (which are not 

observables) and therefore are they not required to obey any hierarchy. 

Fig. 8.2 and 8.3 show the CQJ and C{J couplings with +/- error bands as de-
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termined from the naturalness requirement [163], compared with the corresponding 

phenomenological values. The error bands cover all phenomenological values in the 

density region of interest. Thus, the main conclusion that can be made at this stage 

is that the DME couplings are close to phenomenology, but with a novel density-

dependence, as long as one allows for natural-sized contact terms. For a detailed 

discussion, refer to Ref. [153], while for the corresponding discussion on Ct
l 2 3 , refer 

to Ref. [160]. 

The first calculations following the semi-phenomenological approach advocated 

in this section are underway [164]. Figs. 8.4 and 8.5 shows one of the exploratory 

"results" regarding the saturation curve, W(p, I), of INM and PNM. Here, I = (pn — 

Pp)/' p. The parameters of the DME-based functional used for the saturation curves 

are not optimized, rather they are simple educated guesses. Preliminary indication 

from this study is the Skyrme functional that is augmented with the DME functional 

is more flexible in that it relaxes some of the interdependencies that one observes in 

phenomenological functionals [164]. 

8.2 Key fut ure extensions 

In this section, we revise the main directions in which this work can be extended in 

the future. These are 

• Extensive self-consistent test of the PSA-DME. As discussed in section 5.4, our 

tests can be judged to be extensive only for non self-consistent ones. Along with 

the self-consistent test, the invention of a local NN and NNN chiral interaction 

that is soft enough to be used for these tests is important. 

• Studying the impact of the different DMEs on the couplings of the resulting 

EDF. Note that the non-self consistent tests that we performed in this work are 

using schematic interactions and it will be beneficial to extend this and perform 
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extensive comparison of the actual couplings that result from the application of 

different DMEs. This should provide a better estimate of the associated DME 

errors/uncertainities. 

• Non-self-consistent and self-consistent tests of generalized PSA-DME. This is 

important to gauge the accuracy of the DME approximation that we made to 

the HF energy from the chiral EFT NNN interaction at N2LO. Even though we 

have shown in appendix 9.5.3 that the approximations that we used to obtain 

the generalized PSA-DME are equivalent to the ones used for PSA-DME, the 

existence of more than one non-locality coordinate may change the relative 

accuracy of generalized PSA-DME with respect to PSA-DME. Furthermore, 

the effect of DME-coordinate optimization parameter a in Eq. (7.24) should be 

investigated. 

• Calculation of Bogoliubov contribution from NN + NNN, extension of PSA-

DME or its variants for pairing densities. Furthermore, the required renormal-

ization should be designed along with the DME. 

• From the interaction side, the extension should include the contributions from 

the N3LO component of chiral EFT interactions. It should be noted that, even 

limiting the calculation at the HF level, the four-nucleon interaction which first 

appears at this order will make the extensions more complex. In principle, 

one needs to incorporate the contribution from the four-nucleon interaction. 

Nevertheless, current estimations of its effect on nuclei, at least in light-nuclei, 

suggest that it can be ignored safely. For instance, estimates in 4He show 

that the additional binding energy it provides is of the order of a few hundred 

keV [165]. 

• Extension of the DME scheme to approximate higher-order contributions as 
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discussed in section 5.1.1. 

• Analysis of self-interaction and self-pairing issues that arise in the context of 

the DME [105]. 

8.3 Conclusion 

This work is a part of a long-term project to develop nuclear EDFs starting from 

many-body perturbation theory and the underlying two- and three-nucleon interac-

tions [[110]-[154]]. This is necessitated by the fact that empirical EDFs lack solid mi-

croscopic foundations and often result in uncontrolled (i.e., parameterization-dependent) 

predictions away from known data. 

We used the DME as a tool to explicitly build microscopic physics associated with 

long-range pion-exchange interactions into existing Skyrme functionals in the form of 

novel density dependencies. An important component of this endeavor is the improved 

PSA-DME and its NNN counterpart, the generalized PSA-DME, which are crucial 

if we want to provide microscopic guidance to the description of spin-unsaturated 

nuclei. The rich spin/isovector dependence of pion-exchange interactions gives us 

hope that their inclusion via the DME will give valuable microscopic constraints on 

the isovector properties of the EDF. Moreover, it is comforting that these constraints 

are coming from the best-understood part of nuclear interactions. 

The EDF obtained as a result of the present work contains only HF physics such 

that further correlations must be added to produce any reasonable description of 

nuclei. In the short term. such an addition is being implemented empirically by 

adding the DME couplings to empirical Skyrme functionals and performing a refit of 

the Skyrme constants to data [164]. While this is a purely empirical procedure, it is 

motivated by the well-known observation that a Brueckner G-matrix differs from the 

starting vacuum NN interaction only at short distances. Therefore, one can interpret 
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the refit to data as approximating the short-distance part of the G-matrix with a zero-

range expansion through second order in gradients. Eventually though, it is the goal 

of the UNEDF (universal energy density functional) project to design a generalized 

DME that is suited to higher orders in perturbation theory and move closer and closer 

to complete microscopy. 
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Chapter 9 

Appendix 

9.1 Mathematical Formulae 

In this section, we list the Mathematical definitions, relations and formulae that have 

been used in the rest of the work. Only the relevant mathematical relations and 

formulae are listed, and for a more extensive list, refer to classic references such as 

[[152],[151]]. 

9.1.1 Miscellaneous elementary formulae 

In various parts of this work, we use the following general linear coordinate transfor-

mation. Starting with two coordinates (xi, x2), we define a new coordinate system 

(2?, X) as 

x = x\ — X2 X = (1 — a)x\ + ax2, (9.1) 

where the unspecified parameter a is a real number satisfying a e [0, 1]. The corre-

sponding gradient operators are given by 

V* = aVXl - ( l - a J V ^ , (9.2) 
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V Y = V t 1 + V.Tn , (9.3) 

with a — 1/2 recovering the usual center of mass and relative coordinates. 

In the derivation of local densities, detailed in appendix 9.4 and other parts of the 

work, the following elementary results are important. 

V - V ' ( f - r ) 

dk{f-r') 

— fdUP{r-Å){f-B) 
47T J 

2_ 

r>6ijr'Z - rirj yk 

ij 

r2 -. -
-A.B. 

(9.4) 

(9.5) 

(9.6) 

The manual derivation of the HF energy from a generic two-nucleon interaction 

involves a modest amount of spin-isospin algebra. First, the Pauli matrices are given 

by 

(TT = 

V1 ° / 
Oy = 

0 -i 

i 0 

1 0 \ 

Or — 

0 - 1 
) 

They satisfy the commutation and anticommutation relations 

(9.7) 

Oi<jj - GjOi = i 2djk <Jk , 

OiOj + GjOi — 2SijI, 

(9.8) 

(9.9) 

which can be used to prove 

(A-a) (B-a) = (A- B) I + ia • (Å x B), 

el c = cos(a) + i(n • a) sin(a), 

(9.10) 

(9.11) 
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for any two vectors A, B and A = aA. Additional, elementary relations are 

^2,oaa = 0 , (9.12) 

(9.13) 

9.1.2 Clebsh-Gordon, Wigner 3-J and 6-J coefficients 

Representing Clebsch-Gordon, Wigner 3-J and 6-J coefficients by 

\jm\jlmlJ2m2) 
3i 32 3 

\ 

rri\ m2 m 

3\ 32 3 

mi m2 m 
(9.14) 

respectively, the following is a list of the relations that are important for different 

parts of this work. 

]T<Zm^|jm)2 = ! ± { , (9.15) 

for all m and mi such that m = mi + a. 

{hmxj2m2\jm) = (-l)m+h^2 ^2jTT 
h 32 3 

\ nii fn2 m ) 

(9.16) 

y ( _ 1 ) a i Ji te te 

rrMrarmg \ 7Tl\ 77i5 TTIQ 

\ 

/ 

fa fa fa 
-7714 171*2 TTlQ 

h 32 fa 

34 35 J6 

where a = j 4 + m4 + fa + m 5 + fa + ra6 . 

/ 

V 

fa 35 fa 

m,4 — m 5 m§ 

3\ 32 fa 

m,\ 77i2 rr«3 

(9.17) 

J 
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J\ J2 J 

m\ m,2 rn 
= (_i)i i+J2+J 

h j h 

i \ 
m\ m ni2 

(9 

£ ( 2 L + 1)/(J,L) 
L l 1 \ I l L 1 

1 1 l \ \ 0 0 0 
/ 

= - ^ ( - i ) ' N / ( ( 7 T i ) . (9 

where 

/ ( / , ^) 

— \ / 2/4-3 U-L/ — / + 15 

0 otherwise. 

, m2 m/ 0 , 
= (_i) '- r o / m; 

7 / ( / + l)(2/ + l) ml'-ml 
(9 

/ i 1 

mi m[ 1 , 

(_l) ' -m i (l ~ md(l + mi + l) 5 

21(1 + l)(2l + 1) ml~mi mi,—m, — 1 (9 

l l 1 

m/ ml — 1 

, y + m / + 1 Ul + mt)(l - mi + 1) 
1 j V 2Z(/ + 1)(2Z + 1) S ' " m / + 1 (9 

/ / 1 

1 Å 7 
2 2 J 

1 , i y + ? + 3 / 2 3/4 + f(f + 1) -Jti + 1) 

V& y/l(l + l)(2l+l) 
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9.1.3 A few special functions 

Legendre polynomials 

Starting with the associated Legendre differential equation, for integer l and m, 

d_ 
dx 

(i-x2) pr (x) + i(i+i) - mr 
x1-

P^(x) = 0 , (9.24) 

where i e R (the set of real numbers), P™^) is the associated Legendre polynomial. 

The associated Legendre polynomials satisfy 

P1-(a;) = (-ir||T^}ir^) (9.25) 

For rn — 0, the differential equation given in Eq. (9.24) can be reduced to 

( l - * 2 ) 
d2Pi(x) dP((x) 

dx2 - 2x — ^ + l(l + l)Pi(x) = 0, (9.26) 

where Pi(x) is Legendre polynomial of order /. The first few Legendre polynomials 

are 

Po(x) 

Pi (x) 

P2(X) 

X . 

\ (3*2 - 1) 

(9.27) 

(9.28) 

(9.29) 

The Legendre polynomials are orthogonal over the range (—1,1) and satisfy 

f 2 

I (IX in\X) rm\X) = — —~~~ Umn . 
(9.30) 
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Additionally, Pi(l) = 1 for any l. The derivative of Legendre polynomials satisfy the 

following properties 

dPi{x) 1(1 + 1) 
X \x=\ 

x2 -ldPi(x) 
n dx 

(9.31) 

xPi{x) -Pi-i{x). (9.32) 

Laguerre polynomials 

The Laguerre polynomials are solutions of the Laguerre differential equation 

X ^ é ^ + (1~X)^̂  + nLn{x) = °- (9>33) 

The can also be defined using Rodrigues formula 

where L°(x) is the associated Laguerre polynomial. The Laguerre polynomials are 

recovered by setting a = 0 

Ln(x) = L°n(x). (9.35) 

The first few associated Laguerre polynomials are given by 

L%(x) = 1, (9.36) 

Z°(x) = -x + a + 1, (9.37) 

ra/ N x 2 , cs\ (a + 2)(a + l) /n 0„. 
£?(*) = y - ( « + 2)x + ^ 'j '-. (9.38) 
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Gamma functions 

The Gamma function, which appears from the extcnsion of the factorial with a down-

ward shift of the argument by 1. is given by 

r» 
/•oe 

= / dttx~le-\ (9.39) 
Jo 

where x is a complex number with a positive real part. In this work, we need only 

the Gamma function for positive integer arguments, which is given by 

I » = ( n - 1 ) ! . (9.40) 

Spherical harmonics 

Spherical Harmonics are eigenfunctions of angular moment um operators l? and Lz, 

and are given by 

with their orthonormality relation being give by 

f rded<$>Y?{QA)Y™\Q^) = 8u,åmml. (9.42) 
Jo Jo 

There are various relations satisfied by spherical harmonics, and which are of interest 

to this work. These are 

£lf'V)>T(0 = ̂ fl(r'-r), (9.43) 
ml 
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where the sum extends over all allowed values of mi. 

f (r) Yr(r) 
r df(r) 
r dr 

Yr(f)+f(r)VYr(f) (9.44) 

where f (r) is any function dependent only on r. 

VnYr\r) = -Y, /('» L) (llm'm\LM) Y?{r), (9.45) 
LM 

where 
i+i 
21+3 

HL = 1+1; 

f {UL) = { 

0 otherwise. 

Yr(ø, <!>) 
1(21 + \)(l - m)\ 

47r(/ + m)! 
if(cosØ) é 

d_ 
oe Y?(0,0) = 

PTm(z) = 

(9.46) 

(9.47) 

(9.48) 

Bessel functions 

Bessel functions are solutions of Bessel's differential equation 

x 
,d2Ja(x) dJQ(x) 

dx2 + x—; h (x — a ) Ja(x) = 0, 
dx / « v y 

(9.49) 

where a is a complex number and Ja{x) is Bessel, function of order a. In most 

physical problems with spherical symmetry, a takes half-integer values, a = n+ 1/2 . 

185 



Consequently, one defines the spherical Bessel functions of integer order, ra, as 

jn(x) = ^jn+y2(x) = (-xr(l^) n f 1 d \ n sin(a 

x 

The first few spherical Bessel functions are 

Jo (a) 

h(x) 

sin(a;) 

x 
1 sin(:r) cos(x) 

x x 
3 

- 1 
x" / x 
15 6^ sin(a:) 

x 

x 
sin(x) 3 cos(x) 

x 

x x 

x 

x2 

cos (x) 

105 45 , sin(a:) 

x 

x 
105 10^ cos(a;) 

3 X° X X 

(9.50) 

(9.51) 

(9.52) 

(9.53) 

(9.54) 

(9.55) 

9.1.4 Three-dimensional spherical harmonic oscillator eigen-

functions 

The isotropic three-dimensional harmonic oscillator is described by Schrodinger's 

equation 
h 

A + - r a w2 r2 
<}>nlm(r,9,4>) = Cnl<l>nlm(r,0,(t>). 

2ra 2 

The wave-function is separable in the radial and polar coordinates as 

tfwm(r,M) = ^^-Yt
m(8,<f>) 

(9.56) 

(9.57) 

where 

Rni(r) 
2(ra-l)! 

Vpr(n +1 + i/2)3J 

1/2 
^ + V * / 2 L M - l / 2 ( ; c ) 

x = Pr2 
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"-x 
e)U = huj(2n + l-l/2). (9.58) 

Note that there are two conventions in use regarding the possible values of integer n: 

n > 0 and n > 1. The latter is used in this work. 

9.1.5 Gegenbaur expansion 

Gegenbaur's addition theorem of bessel functions of the first kind reads 

^T = ^ r £ ( " + /*) J ^ ) - W i / ) CVÅC0<6)) - (9-59) 
r X y ,1=0 

where v > 0 and for all values of x, y and 9 (the angle between x and y). The variable 

r is given by r — ^Jx2 + y2 — 2xycos(9). T(v) is the Gamma function and C^ refers 

to Gegenbaur polynomials. The first few Gegenbaur polynomials are given by 

Co = ° ' 

Cf/2 = 3cos(0), 

ns/2 _ 3 15cos2(fl) 
° 2 " 2 + 2 ' 

s/2 _ 15cos(fl) 35 cos3 (9) 
G 3 - o I 7, 

(9.60) 

A formula related to Eq. (9.59) is 

J^ér- = 2^r E ( - i ) " (" + ri J-»-Ax) J»+M <>(«*(*)). (9-6i) 
' Ju 11 _ 

and it holds only when lye^ l < \x\. Combining Eqs. (9.59) and (9.61), one obtains 

the relevant expansion for Bessel functions of the second kind and those of the mod-
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ified Bessel functions. For details. refer to [195]. Gegenbaurs addition theorem is a 

key ingredient for the analytical calculation of the EDF couplings obtained from the 

application of the DME to the HF of chiral EFT three-nucleon interaction at N2LO. 

Refer to section 9.11 for details. 

9.1.6 Functional derivatives 

A functional maps functions into a number. Analogous to the derivative of functions, 

one dennes the functional derivative of a functional, F[f(x)], with respect to f (x) as 

SF =Hmc_nf(v)+eS(y-X)]-F[f(y)] 

•s/M 

The functional derivative satisfies several relations which are analogous to the ones 

satisfied by the derivatives of functions. For instance, if F and G are two functional 

of/(.r), 

S(FG) _ S(F) S(G) 

im - Gim + FJm' {9m) 

wMefor F[f(x)]= f*dx[f(x)]n, 

W) _r„_Mn-l 
* / ( * ) 

= n\f(x)]n-\ (9.64) 

9.2 The one-body density matrix and densities 

The basic quantity in the EDF approach for nuclei is the OBDM and the various 

nonlocal and local densities that can be extracted from it. An extensive discussion of 

these basic quantities is given in this section. 
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9.2.1 Properties of single particle states 

The wave function of a particle håving spin S is a spinor of rank 25, i.e. is composed of 

25 + 1 components. The particles constituting the nucleus are protons and neutrons 

which have spin, S = \. The single particle states are assumed to have a good isospin 

projection, but mix spin states. We use a = ± | , q = ± | to designate the spin, isospin 

and i, j , k... the remaining quantum numbers of the single-particle states respectively. 

Thus the single-particle states can be designated as 

\iq) = Y,\ia(l) • (9-65) 

In spinor notation, the single particle spinors are given by four real functions ipi,..., </?4 

cpi(fa = +^q) 
(f\iq) = <fi{rq) = \ 

<Pi(ra= -\q) i y 
(9.66) 

The orthonormality and closure relationships are given as 

j dr4{rq)Vj{rq') = 6 ^ , , (9.67) 

Y,^{raq)^{f'a'q') = 5(f- r')6aa, 8qq, . (9.68) 
i 

It is important to characterize the single-particle properties under time reversal. The 

time-reversal operator is given by T = iayK0 where K0 denotes the complex conjuga-

tion operator and ay is a pauli spin matrix. Thus the time-reverse of the single-particle 

states is 

(TiP)l(faq)=2a<p*(^q), (9.69) 

where a = — a. For an extensive discussion, refer to Ref. [81]. 
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9.2.2 One-body density matrix 

The one-body density matrix can be written in (fag) space as 

pq{ra,r'o') = <<& | c\r' a'g) c(faq) | $) - £ tf(r Wq) <fj(rag) p% , (9.70) 

v 

where |<&) defines the many-body wave function and Pj{ — {$\c\Cj | $) defines the 

density matrix in the basis {ei/pi}. Since the single-particle states have definite 

isospin quantum number, the density matrix is diagonal in isospin subspace. The 

density matrix can be separated in its scalar/vector-isoscalar/isovector parts 

pq(fa,r'a) = - Po(r,f") 5aa, + s0{r,r).daai 

+ (-i)1/2-9(pi(r,f') 8aa, + s^ryysS) , (9.71) 

where the scalar-isoscalar, scalar-isovector, vector-isoscalar and vector-isovector parts 

are respectively 

f-Po(r,f') = 5 3 Pi(rP;r'a')Sffa, = 5 3 5 3 ^i^'a(i) Vjifag) p) 

Pi (r, r") = 5 3 P<i(r°, r' a') 8aa, A(g) = 5 3 A(Q) Y V* ^'aq^ W t™g) P% 
aa'q a1 V 

= Y Pip'?')* (9-73) 

s0{r,f') = Y P^f'a^'a')^'a = 5 3 5 3 V,r(rVg) ^j{rag)aa,<Jp)i 

ca q aæq %3 

= 53*»~"), <9-74) 
<? 

«1 (r, f') = Y P^™-- ? a')°<j'o A(^) = 5 3 Atø) 5 3 iPi(f>a'^ VÅ™!!) <V<X P)i 
oaq ao'q V 
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= £AtøK(f;o, (9.75) 

where A(q) = (—1)2 q . The extraction of the scalar/vector-isoscalar/isovector parts 

from Eq.(9.71) can be done easily using properties of the Pauli matrices given in 

Eqs. (9.12)-(9.13). 

9.2.3 Local densit ies 

Working in neutron/proton representation and taking derivatives up to seeond order, 

the following local densities that can be formed from pq(r, f') and sq(f,f') 

Pqif) 

3 UV 

JUV 

TUV 

JUV 

^V^](f9)-V^(fg)p^, 

^2<p](rq) a^ipiifq) p\ , 

-i Y S^aVi^) 
va ji 

^v<JaVi{rq) ' t j 

J2 ^I(^) 
v 

0> -Vtpiirq) Pij 

= - |EE -{iva I fj 

va ]i 

o ' / lyn <PWq) Vv(Ta<Pi(rq) 

Jq,liv{f) 

FUV 

V^](r'g) Oa¥i{rq) ) p 
i] 

Øv^titpiirq) 

^E 
u 

t/Æ, V • a^(f<?) V ^ ( f g ) + 

V ^ ( f g ) 

V ^ - ( r g ) 

(9.76) 

(9.77) 

(9.78) 

(9.79) 

(9.80) 

(9.81) 

(9.82) 

VvVifå) )pqu (9-83) y 

V-aipi{rq) ) p\-. 

(9.84) 
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These are the matter density, kinetic density, spiri density, current density, spin-orbit 

density, the spin kinetic density, the cartesian spin-orbit tensor density and the tensor 

kinetic density. These local densities, except J' are all real. It can easily be shown 

that in the case of time-reversal invariant systems, J' and Jq are equal to each other. 

9.2.4 Properties under time reversal 

According to Eq.(9.69), the scalar pT(f,f') and vector ^(r,?') parts of the time 

reversed density matrix pT(ra,r'a') are [196] 

PT
q (?,?') = p*q(f,r') = pq(?',f) (9.85) 

* tV>" ) = - ^ ( r , r ' ) = - s g ( f ' , r ) (9.86) 

Thus, under time reversal, the transformation of the local densities is 

Pj(*0 = P,if), rT
q{r) = rq(r), s^r) = -s(r), j^r) = -jg(r) (9.87) 

Jq
T(r) = Jq(f), fq

T(r) = -fq(r), Fq
T{f) = -F(r), (9.88) 

where one can simply count the number of time-odd operators used to define the 

density to obtain its transformation property under time-reversal. For time-reversal 

invariant systems, one sets all the densities equal to their time-reversed counterparts 

pT
q(r,r') = pq(f,f') = p(r',f) (9.89) 

s^rS') = sq(r,f") = -s,(f,r), (9.90) 

and the time-odd densities vanish. Le. 

sq(r) = 0, jq(f) = 0, 
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fq{r) = 0 Fq(r) = 0. (9.91) 

The rest pq(r) , rq{r), and Jq(f) are time-even densities. 

9.2.5 Extension to anomalous contractions 

The normal density is insufficient for the explicit treatment of pairing correlations. 

Thus in addition to the normal density, plfl = c ,ci,, one introduces pairing tensor, 

referred to as the anomalous density, K,/ ; = c^/Q. The generalized one-body density 

matrix is defined as 

Tl = 
($ | /3 |$ ) (<&|/c|<I>) I / ( $ | C | , Q | $ ) ( $ | C ^ / Q | $ ) 

- < $ | « | $ ) * 1 - < $ | / 5 | $ ) * J 1 ( $ | c j , c j | $ ) ($ | c , / c j | $> 

(9.92) 

where Z' and / are elements of the single particle configuration space and | $ ) is a 

quasi-particle vacuum [38]. The operator p is hermitean (ft = p) and k is skew 

(anti) symmetric kT = —k. Here kT refers to the transpose of k , not the time 

reverse of k. Two important relations hold for p and k . These are 

p2 — p = —kkl, pk = kp*. (9.93) 

Using the above two relations, it can be easily seen that the generalized matrix 71 is 

idempotent i.e. TZ2 — Tl. In fact, H is also Hermitean. The pairing tensor can be 

transformed into the pairing density matrix, p. This is given in (faq) space as 

p(faq, r'a'q') = 2å' ($ | c?,-0,q, c?aq |$) = 2a' n{raq, r'a'q'). (9.94) 

We still assume that the density matrix is diagonal in isospin subspace. In pairing 

terms, this assumption means that there is no proton-neutron pairing. This implies 
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that the pairing density p ifaq, f'a'q') can be written in the form pq (fa, f'a') Sr. 

The pairing density matrix can be resolved into its scalar/isoscalar, vector/isovector 

parts in exactly the same way as the normal density matrix. Thus, appropriate 

contractions in spin and isospin space yield 

po(f, f') = Y Pii™, f' a ) bac, = Y Y 2a Vi(f ,<T<l) VÅraq) K% , 
aa 'q a1 lJ 

= ^ p g ( r , f ' ) , (9.95) 
i 

Pi (r, f') = Y Pii™' f' a) 8aa, Afø) = Y Atø) Y 2° <^ ( f ' ^ ) <Pj(raq) «£ , 
aa 'q a1 V 

= ^ A ( g ) p 9 ( f , f ' ) , (9.96) 

So (f, f") = Y Pli™, f J) °0la = Y Y 2° V*(f"^9) VA™*!) °a'a K% > 
aa^q aa q l3 

= Y~gi^n, (9-97) 
1 

«i (r, r') = Y Pi^V;f'a>) &a'a A(l) 
aa' q 

= J2 A ^ ) Yl 2° Vi(r'o'q) <Pj(raq) aal<J «£ , 
aa'q lJ 

= 5»-, f), (9.98) 

Working in neutron/proton representations, and going directly to the local densities. 

the following is the list of the local pairing densities that can be formed by taking 

derivatives up to second order 

Pqif) = Y Y 2°<Pi(™q) Vjirvq) rfi, (9.99) 
a ij 

fA^) = E E 2 ^ ^ ^ ) • Vfjiraq)^, (9.100) 
a ij 

hAV = YY2å'^r^^a^^^q)K% = 0, (9.101) 
r ' ij 
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JqA?) = ^2a\¥i{™q)V^¥j{raq)-V^i{roq)¥j{raq)\Kq
ji, (9.102) 

aij 

r w ( r ) - Y^Yl 2°' V V>iif&q) • (° V » V <Pj(f<rq) K% , (9.103) 
aa' *i 

• W O = - ^ X I X X 2 ^ ' e ^ « f ^i{r'a'q)Vv {(j'\aa\a) <Pj{raq) 
va aa' «i 

-Vv<pi{?a'q) (a V a k ) <^(f Vg) W (9.104) 

• W ( 0 = - 1 5Z 5 Z 2CT ' f ^ (f a 'g) V^ (<r > „ I o-> yjj (fag) 

- VM <Pi{fa'q) {<J'\°V\O) ^>j{raq) J «;£ , (9.105) 

a a ' *J 

+ V„ <pj(ra'q)V • (a'\a\a) <pi(raq) ) K% . (9.106) 

One notes that most of these anomalous local densities are not used in current 

empirical parameterizations of nuclear EDFs (see section 4.2.2). In fact, only the 

local pairing density, pq, is used. As discussed in section 5.3.8, the application of 

the DME to the anomalous part of the OBDM results in these local densities. Thus, 

these densities may be useful in future non-empirical construction of the particle-

particle/pairing part of nuclear EDFs. 

9.2.6 Relations among the densities 

One can establish a number of relations among the various local and nonlocal densities 

defined in the previous section. We start with those relations which are important in 

the derivation of the DME of the scalar/vector components of the normal part of the 

OBDM. These are 

( V + V'2)p9(f,f') = V 2 p g ( r ) - 2rg(f) (9.107) 
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VW r, f ) 

V ' 2 p g ( r , r ' ) 

Vpq(r,r') 

^2pq{r)-Tq{r) + iV-U^ (9-108) 

\v2pq{r) -rq(r) - i V - J ( f ) 

VV^f,^) 

V2 + V^J^(f,r ') 

V M s^( r . f") 

r=r 

(9.109) 

(9.110) 

(9.111) 

- V p q ( r ) + i j q ( r ) 

V 2 s ^ ( r ) - 2Tv>q(f) 

V^ s^C r, f) 

V ^ , g ( f ) + i J W 9 ( r ) . (9.112) 

Most of these relations were initially given in Ref. [197]. Here, we extended the 

list by deriving additional relations which are found be useful in the derivation of 

the generalized PSA-DME, discussed in section 9.5.3. We illustrate the derivation of 

these relations by taking Eq. (9.107) as an example. Starting with the left hand side 

ofEq. (9.107) 

V2 + V" pg(r-,f') V2 + V'2) ^ ( r ^ < A ( f g ) 4 

= E •ij 

3i 

Ji 

•2,J/V„ 

= EÆ 

pi(rq)V <p}(rq) + ipj(fq) V ip\{fq) 

V2 \iPi(rq)w){rq) 

2V^(rg)-V^(fg) ' i 'vri 

= V2pq{r) - 2 r , ( f ) , (9.113) 

where we used the definitions of pq(r) and rq(r) given in Eqs. (9.76) and (9.77). The 

same set of relations holds for the anomalous densities as differentiation is the only 
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operation that is applied in the derivations. Hence, we avoid repeating these relations 

for the anomalous densities. However, under general circumstances discussed in [81], 

the nonlocal anomalous density, pg(f,f') satisfies 

pq(f,r') = pq(?',r), (9.114) 

which results in jq(R) = 0. For the nonlocal anomalous spin density, we have 

~sq(f,r') = -~sq(r',f). (9.115) 

9.3 Local Gauge transformation of the OBDM and 

local densities 

Neglecting relativistic effects, the nuclear EDF must be invariant under Galilean 

transformation, while the usual justification for the requirement of a locally gauge 

invariant EDF is the fact that the underlying nuclear interaction is expected to be 

gauge invariant. This seems to hold only for local interactions. Still, it is shown 

in Eq. (9.130) that Galilean transformation is a special kind of local gauge transfor

mation. In addition, the locally gauge-invariant bilinear combination of densities, 

which is what we are interested in, do not depend on whether one invokes Galilean 

invariance or local gauge invariance. Thus for the sake of generality, we discuss the 

local gauge transformation of the normal and anomalous parts of the OBDM and 

densities. The ultimate objective is to obtain the bilinear combination of densities 

that are invariant with respect to local gauge transformation. 
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9.3.1 Local Gauge transformation in many-body physics 

In many-body physics, one can formulate local gauge transformation in two equivalent 

ways (i) local gauge transformation of the many-body wave-function which is an intu

itive generalization of the local gauge transformation of single-particle wave-functions 

especially in the case of Hartree-Fock approximation (ii) local gauge transformation 

in second quantization formalism which is very general and can be applied in any 

many-body approximation. 

Conventional formulation 

In the usual formulation, local gauge transformation is applied to the N-body Hartree-

Fock wave-function |<&) in space, spin and isospin coordinate space 

$(xi,x2,...,xn,t) = exp<i'^r<f>(xj)>$(x1,X2,...,xn,t), (9.116) 

where Xi = (fi,ai,qi) and (f)(xj) = <j)(fj,t) is an arbitrary, differentiable real function 

of the position f and time t. In general (j)[xj) are independent of spin and isospin 

coordinates, and in the static picture, they do not depend on t. 

Second quantization formulation 

For generalization of local gauge transformation to other many-body approximations 

where there is no explicit conservation of particle number, one has to formulate local 

gauge transformation in second quantization. Since the state vectors in second quanti

zation are elements of abstract Hilbert space or Fock space, local gauge transformation 

must be performed by an abstract unitary operator [198]. When the transformed-

state vector is projected in to the N-particle subspace, the transformed wave-function 

in the subspace is equal to the projection of the original-state vector times the ap-

propriate space and time dependent phase factors. In second quantization the state 
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vector |$), which is not necessarily an eigenstate of particle nuniber, is represented 

in Fock space by the column vector 

|$) = col {I*0}, l^1),..., |$"),...} , (9.117) 

where |$4) refers to i-particle component of the state-vector. A local single-particle 

operator <fi, which is assumed to be diagonal in isospin space, can be represented in 

second quantization as an operator in Fock space 

Y2 S / dr(f<Jiq\<f>\ra2q)a\raiq)a(ra2q). (9.118) 

Defining the unitary operator U as 

U = exp < i y^ y^ / dr {raiq\(j)\ra2q) a*(rcriq) a(r<72q) > , (9.119) 

the local gauge transformation of the state-vector is given by [199] 

|$) ' = tf|$). (9.120) 

One can easily verify that this gives back the previous formulation when applied to an 

N-particle Hartree-Fock wave-function. Once the unitary operator U is defined, local 

gauge transformation can be carried out by transforming the creation and annihilation 

operators 

a'(raq) = Ua(raq)U] = e " ^ ^ a{raq) 

(J\raq) = Ua\raq)W = é^^a^faq). (9.121) 
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9.3.2 Local Gauge transformation of normal densities 

The local gauge transformation of the normal part of the OBDM is 

p'q (nai, r202) = exp jz (ø(rx) - ø(f2)J | pq(nvi, r2a2). (9.122) 

When the various local densities involved in the EDF are calculated from the lo-

cally gauge-transformed density matrix Eq.(9.122), one obtains the following relations 

[200] 

P'qif) = Pq{?) (9-123) 

T'q{?) = r,(r) + 2j,(r)-VØ(r=) + p,(f)rVØ(r)) , (9-124) 

O l = 5^(r ) , (9-125) 

4 > 1 = J9,,(r) + pg(r)VI/0(f)) (9.126) 

KAV = ToA?) + 2 Yl «WOV„<Kf) + Sq<u(r) ( v ø ( r ) ) , (9.127) 

• C / ^ = J^År) + ^{r)VvcP(r), (9.128) 

^>~) = ^(^1 + V^(r lX; V ^(0^(0 + E V ^ ^ J ^ ^ 

+ V^(f) J^-WO- (9-129) 

From the previous relationships, the only bilinear combinations of local densities 

which are invariant under local gauge transformation are 

(i) P<,(r)T
q'{r) ~ Jq(r) • Jq'(r) 

(ii) pq(r)V • Jql{r) + jq(r) • V x sq/(r), 

(hi) Vp,(f) • Jq,if) - sq(r) • V x ^ / ( r ) , 

(iv)p,(r) Jq,{r) + sq(r) xjq,(r) 

(v) ^(f) • fyr) - £„„ Jq^if)J^,Sf) 
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(vi) £„ -W»5) £„ ^V>1 + £ ^ W ) ^ ( 0 - 2^(f0 • ^,(f). 

Galilean invariance is a special case of the local gauge invariance for which the 

phase in Eq. (9.116) is given by 

4>{r) = p • r (9.130) 

where p is the linear momentum of the boost transformation [200]. Transformation 

properties of Tq(f) and jq(r) allow one to interpret Vø(r) as a velocity field, 

vir) — —Vø(r). 
m 

(9.131) 

which shows that the flow of matter obtained through the local gauge transformation 
—* 

is irrotational, V x v = 0 [200]. 

9.3.3 Local Gauge transformation of anomalous densities 

The local gauge transformation of the anomalous part of the OBDM reads 

pg(ri(Ti,f2<T2) = exp j i (ø ( f i ) + ø(f2)J jpq(ri<Ti,r2a2)- (9.132) 

The local gauge transformation of the various local anomalous densities are calcu-

lated from the locally gauge-transformed anomalous part of the OBDM as given in 

Eq.(9.132). Thus one obtains 

m 
TÅ?) 

- p*20(r) -
= e Mr) (9.133) 

i24>(r) f,(r) + V</>(r) • ( Vip,(fi,r2) + V2/3f/(fi,f2) 

+ P9(r)(VØ(r)) 

r-i =ro=r l= r2 

(9.134) 
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KA*) 

Tg(rl 

emrl§q,k(r) = 0, 

= e 
i2<t>(r) f 

— e 
i2<p(r) 

hir), 

fq{f) + VØ(r) • f Vis,(ri,f2) + V2sq{n,r2) 

(9.135) 

(9.136) 

+ s, .(*0(^(O)s 

£«(0 = e^-W**)-

ri =ro=r "1=^2 

(9.137) 

(9.138) 

The above relationships yield the following locally gauge invariant bilinear combina

tion of densities in the pp-channel 

(i) |A/(0|2 

(ii)|sQ(r)|2 

(iii) p 9 ( r ) (Ap*(r)-4f ; ( r ) ) 

(iy)~sq(r)-(A^(r)-é*(f)) 

(v)\J<i{r)\2 

(vi) ^ Jq,vnJq,vn > notiiig that complex conjugates of (iii) and (iv) are also gauge 

invariant combinations. One can verify that starting from a local/semi-local interac-

tion, such as the standard Skyrme given in Eq. (4.12), only the bilinear combination 

of normal and anomalous densities identified in this section occur in the HFB energy. 

9.4 Densities in spherical systems 

Under spherical symmetry, which also implies time-reversal invariance, the various 

densities defined in the previous section take simplified forms. In spherical symme

try, the HFB quasiparticle wave functions in the traditional representation take the 

202 



form [81] 

U^q[k]{rq) = ^É^Y.ypi^ilm^jm)^) (9.139) 

V (ra) 1 
V^«W(rq) = -J^l^Y,yri{r)2a{lmi-a\jm)\a). (9.140) 

r 
mia 

9.4.1 Expression for the normal densities in spherical sym-

metry 

Using the specific form of the quasiparticle wavefunctions given in Eqs.(9.139) and 

(9.140), the full density matrix reads 

Pq(fa,f'a') = ^ V ^ V ^ ^ V * ' ? ) 
nljm 

m[a' 

YL
 l(r)2a(lrni-a\jm), (9.141) 

nlim mia' 

X 

mia 

where we have made use of the fact that the radial parts of the quasiparticle wave 

functions and Clebsch-Gordon coefficients are real. In the following sections, the most 

simplified forms of the various normal densities are given (for spherical symmetry). 

Scalar part of the density matrix - matter density 

The simplification of the nonlocal matter density proceeds by making use of the 

relations stated in appendix Eq.(9.15) and Eq.(9.43). Thus 

nlj 
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where Pi is Legendre polynomial of order l. The above expression is manifestly 

symmetric in f, f', viz, pq(r,r') = pq{f',r). For the local part, one simply sets 

f' = r in Eq.(9.142) to obtain 

p,w = E 
nlj 

2j + l 
47T 

VZiÅr) 
(9.143) 

To derive the local gradient and laplacian densities, one simply operates on Eq. 

(9.143) using the respective operators. Hence, 

V^(f) 
y ^ 2 j + 1 d 
£-~i Air Br 
nlj 

W ^ 2 

A _ v ^ 2j + l f d2 2 

nlj 
4-7T V < 9 r 2 

W 

(9.144) 

(9.145) 

Kinetic density 

For the kinetic density, one can proceed in two different ways: (i) Operating on the 

siraplified form of the nonlocal matter density as given by Eq.(9.142) (ii) Operating on 

the quasiparticle wave functions (lower component) as given in (9.140) and employing 

angular momentum algebra. The first path is followed for the sake of simplicity. 

Starting with the nonlocal kinetic density, 

rq{r,r') 

= E 
V-V'P(?(r,r-") 

2j + l 

nlj 
An 

v{r')y.,^mY 

tj 

+ ^p- P/(f' • f) fV{r)^ ' ^ 5^2 ~ rl^ 
ttr* f " ^ \ (j-> i ry*2i irt! O 

V(r') V(r) D _ , W-)E^ r'kTj Sijr'2 - r [r] 5ikr'2 - r{rk 

r-'3 

ijk 
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V (r1) V(r) _ „ . , ^ ^ V ' 2 - r/r; k^ - nr 
Pi'(r' • r) E „/3 

(9.146) 

where P{ and P" denote first and second derivatives of the Legendre polynomials. 

Using this same notation and simplifying the above expression one obtains Even 

though the above expression looks complicated, it is handy to use when one wants 

to extract the local value. With the nonlocal kinetic density as given in Eq. (9.146) 

and setting f' = f, one can simplify the expression rauch further. Making use of the 

relations stated in Eq.(9.5) and Eq.(9.31), one obtains 

w = E Tq(r) = 
nlj 

2j + l 
4nr2 VS-(r) - * W V | Ki + i) KM'' (9.147) 

The vector part of the density matrix - Spin density 

The nonlocal spin density is given by 

sg(r,r') = ^ pq(fa,f'a')(a'\a\a) 

r' 

V^(r') Vk(r) ^ ^ , ^ , 1 . , , . 

nljm mla m[v> 

x {Imi-Tjøljm) 4ø"£r' (a'\a\a). 

(9.148) 

In the orthonormal coordinate system defined according to 

e0 = ez . e±1 = =F—= (ex ± iey ) (9.149) 
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and using 
1 1 

(a'\<Tp\a) = \/3(-crl/x|-o-') (9.150) 

one can write the nonlocal spin density as 

-.A',?) - ^ E ^ 1 ^ E i fV i i fww + i) 
nljm mi cm, a l„l 

X ( - 1 ) 22+2m+3(7-2 

/CTm/ < 

' I ^ \ 

m/ er —m 

i ^ 

) 
m! a' —m 

) 

x 
i 1 i 
2 2 

a /x a 

(9.151) 

Making use of the 3j-6j symbols relation stated in appendix 9.1.2, one obtains 

8q,p(?y) 
"•'•? mim! 

X 
Z / 1 

1 1 7-
2 2 •> 

J 

i \ mt 

l 1 ' 

m[ fi J 

-i)j+mi+1 

(9.152) 

One can plug in the algebraic values for the 3j and 6j symbols in the above equation 

and do further simplification. To proceed further than that, it is imperative to choose 

a coordinate system in which one of the vectors (f, f) is along the z—axis. Let r' 
ml 

be the one along the z-axis. This implies that 9' = 0 and ø ' = 0. Thus, only Yl 

contributes. Making use of the relations in Eq.(9.20)-Eq.(9.23) and simplifying, 

m/=0 

sq${r,r') = 0 

V (r') Vq (r) 
= i ^ (~l)2j+1 (2j + 1) ^ — -^llYr^Yf^e' = 0, cf,' = 0 

nlj 

X 
y/2l{l + 1)(2Z + 1) 
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sq^(f,f) = i^(-l)2M2J + l ) ^ ^ ^ ^ F /
1 ( r ) ^ ( ^ / = 0,0' = 0) 

nlj 

x v/2/(/ + l)(2Z+l) 

One obtains the prefactor i after properly summing the exponents of —1 which takes 

the form (—1)° where a — 2j + 3/2 or a = 2j + 1/2. Writing the components in 

x . y, z coordinate space, one obtains 

sq,z(r,r') = 0 (9.153) 

nlj 

x c o s W (3/4 + 1(1 + 1) - ]U + 1)) V ( ; + 1
1

) ( 2 i + 1 ) (9-154) 

sq 

nr yi (r') yq (r) 
vir,?') = ^ ^ Y s ^ + V ^ r 1 •J!f1Ptt<x*(0))Y?(9' = 0t<l>' = 0: 

nlj 

xsinW(3/4 + /( i + 1 ) - j ( j + 1 ) ) V ( i + i ) ( 2 t + i ) . (9.155) 

The above result can be used to show that the nonlocal spin density is in the direction 

of fxf'. This can also be shown to be true from a different perspective : using the 

properties of nonlocal spin density under time-reversal and symmetry arguments. In 

spherical systems, the general form of the nonlocal spin density can be constrained 

as follows. There are only three vectors available for the construction of any vector 

physical quantity. These are f*, f' and fxf'. Thus 

s(f, f) = sa{r,r', 6)r + sb(r, r', 6) f + sc(r, r', 8)fxf, (9.156) 

where the sa(r,r', 9), Sb(r, r'. 9) and sc(r,r', 9) are scalar functions dependent on the 

magnitudes of f, f and 9 which is the angle between f and f. In spherical systems, 
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the nonlocal spin density should satisfy 

sq(?,f) = sq(-r,-f). (9.157) 

This condition can be satisfied only by setting all except sc(r,r') to zero. Thus the 

nonlocal spin density is proportional to f* x f'. To further constrain the form, let us 

invoke the property of nonlocal spin density under time-reversal invariance. Under 

time reversal 

%(?,*") = -%(?,?) = -sq{f,r), (9.158) 

from which one recovers that sq(r) = 0. Using the above property, one can easily 

show that the nonlocal spin density has only an imaginary component. Thus 

sq(r,f") = ir x f"sq{r,r',6). (9.159) 

This result has been verified by the derivation in Eq.(9.153) 

«.<'.''.«> - - # £ ^ ^ ° ( o , o ) 5 ^ 9V V 47T ^ r ' 2 r2 ' v sinØ 
nlj 

W + 1) ( 3 / 4 + >(1+ ! ) - , • ( , • + 1)) 

l(l + l)y/2lTT 

In ref. [170] a similar expression is given for the nonlocal spin density with sq(r, r',9) 

being 
1 y (r'\ vq (r) 

sg(r,r',0) = ± 1 X ; - ^ ^ ^ ( c o r f ) , (9.161) 
nlj 

where ± is for j = l ± 1/2, P{ is the derivative of Legendre polynomial P\ and 6 is 

the angle between r and f'. One can show that Eq. (9.161) reduces to Eq. (9.160) 

by using the relations Eq.(9.46) given in the appendix. Obviously, in time-reversal 
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invariant systems, the local part of the spin density is zero. Le. 

s,(f) = 0. (9.162) 

Spin-orbit density 

Starting with the definition of the local spin-current tensor 

• W D = ~\ ( v M - V ^ ^ ^ f ' ) ^ , (9.163) 

and making use of Eq.(9.159), we can write the local spin-orbit tensor as 

Jq,nu{r) = -rsq(r)^2e^a — . (9.164) 
a 

One can write Jq^v(r) as a sum of pseudoscalar, (antisymmetric) vector and (sym-

metric) traceless pseudotensor parts 

J^Ar) = l^jfH?) + \ J2^J(S{r) + jQ,(f), (9.165) 
k=x 

where the three components read 

Ji0)(r) = £ W « « < ( 0 (9.166) 
(IV 

J?l(r) = Jq^r)-\8,vjf\f)-\J2^kJ^{r). (9.168) 
k=x 

Combining the above results, it can easily be shown that both the pseudoscalar and 

the pseudotensor parts are zero i.e. J^(r) = 0 and J^(f) = 0. Thus one needs 

to simplify only the vector part. Even though one can perform a series of angular 
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momentum coupling operations to obtain the most simplified form for the vector part 

of the local spin-current tensor in spherical systems, a simple physically motivatecl 

derivation is given in Ref. [201]. In spherical systems Jq(f) must be proportional to 

f. Thus 

Jq{r) = 
r Jr 

= 3 <**•*> (9.169) 

resulting in 

J » = Erø+') 
nlj 

j(j + 1) - 1(1 + 1) - Vl(r) (9.170) 

9.4.2 Expression for the anomalous densities in spherical sym-

metry 

For the anomalous part, starting with the anomalous density matrix as defined in the 

traditional representation [81] 

pq(fa,f'a!) = -^2aU^^(ra)V^^(f'a') 
nljm 

Y - VniÅr') v - W V / w , / l /,• x o - z ^ W = ~ Z , ~^T- 2^ Yi (T)(lmi-a \jm)2a ~^— 
lJm m'a> 

x ^ ^ ( r ) ( / m i a | j m ) 2 a . (9.171) 

nljm 

For the following anomalous densities, we follow exactly the same mathematical steps 

as their normal counterparts. Thus only the results are stated. The two changes are 

(i) overall sign becomes opposite to that of the normal densities (ii) one of the lower 

part of the quasiparticle wavefunction is replaced with its upper part. Thus ringing 
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the change in the respective densities, one obtains the following results. 

pairing density 

The nonlocal part of the pairing density reads 

Pq(r, r') = -Yl 
2j + lV:ij(r')U"nlj(r) 

nlj 
Aw 

Pi(f-f'), (9.172) 

while for the local part, one simply sets f' = fin Eq.(9.172) to obtain 

nlj 

(9.173) 

The local pairing gradient and laplacian densities are given by 

^ ^ y^2j + l d V^jrW^r) 

nlj 

nlj 

ATT \ dr2 r / r2 

(9.174) 

(9.175) 

Pairing kinetic density 

The local pairing kinetic density reads 

UUrY ^), - -E^[(W-^)(^)-^) 
nlj *- \ ' ^ ' 

x+^W^W (9.176) 

Pairing spin-orbit density 

The pairing spin-orbit density is given by 

^ = - £ i E P i + 1) 
nlj 

j(j + 1) - 1(1 + 1) W W ) . (9-177) 
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9.5 Details on the density matrix expansion 

In this part of the appendix, we derive and discuss the generalized PSA-DME. First, 

we start with brief discussion of the Husimi distribution and the derivation of the 

quadrupolar deformation, P^if)- This is followed by few remarks and derivations 

related to the Wigner transform of the pq(fi,f2) up to h2. Subsequently, we derive 

the generalized PSA-DME, from which we recover all the special cases such as the 

PSA-DME discussed in section 5.3, the original DME of Ref. [170] and its subsequent 

generalizations [202]. Finally, we give the formal modified-Taylor series expansion, 

discussed in section 5.3.6, of all the local densities. 

9.5.1 Husimi distribution and the local anisotropy P | ( 0 

The Husimi distribution is one of the many quantum phase-space distribution func-

tions. It possesses the key property of positive definiteness [[203],[169]] and is defined 

as 

p-ir-^)- - \ (r-q)2 

1 r h^' rv~^~2^ 'i' 
Hq(r,p) = — ]T \ hpiif^e r0 drx 

P% , (9-178) 

where N = l/(7r3^r3
0

/2) and ro is a chosen parameter. In the following, we use the 

HF single-particle wave functions. The occupation probability of a given spherical 

shell pQnjl is one or zero, except for open-shell semi-magic nuclei where the so-called 

tilling approximation provides the valence shell with a partial occupation. Modifying 

the derivation to include pairing (HFB) can be done through the proper formulation 

of the Wigner distribution as given in Ref. [204], as the Husimi distribution is a 

coarse-graining of the Wigner distribution using gaussian phase space factors[169]. 

To derive Eq. (5.15) for the quadrupolar local anisotropy of the momentum Fermi 
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surface P^if) we start from the definition 

pm = 
_ fdp[3(er-p)2-f]Hq(r,p) 

JdpfPHqif.p) 
(9.179) 

and make use of the relations 

f dpf e - E ^ l ' - ^ = (2n)3h5Vi • V S(f{ - Vi ) , 

—Vrvr~i)2 

e r0 « «J(fi-fJ) + O ( ( 4 r 0 ) 2 ) . 

(9.180) 

(9.181) 

Through direct application of the above relations, one obtains 

fdpfHq(f,p) « (27T) 3 ^ £ | V ^ ( r g ) | 2 p & + O({klr0f) , 

Jdp(f-$2Hq(r,p) » (27r)3n5 £ | ( * • V)^(fg) | 2 p^ + O ( ( ^ r 0 ) 2 ) , 

which, plugged into Eq.(9.179), gives 

P | ( r ) = 
T9(r) 

X^ | (e - ; -VM(rg) | 2 p | + O((k"Fr0)
2) 

Further simplifications can be performed for spherical systems, using single-particle 

wave-functions essentially the same as the ones given in Eq. (9.140). However, note 

that we are working in the HF picture. Using the angular momentum relations in 

section 9.1.2, one obtains 

S>-?)W<*)I'Æ = £ ^ ( ! ^ ) > 
i ^ 7 1 ' ^ * 

El^(^)l2^ = E 
nlj 

2J±1 f i W | gnjl 
ATT \ dr r ' 
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nlj ^ 

C-W rflnjl 

where F(l,j) is given in Eq. (9.1.3) and pqnjl is the occupation probability of the 

(n, l,j) shell with q labeling the protons/neutrons. Plugging these intermediate results 

into Eq. (9.182) yields the expression of Pvif) as 

P2(r) = 
2j + l 

rq(r) 4 ^ 2TT 
* ' ra/j 

£ 8Kk(r)\2 !(! + l ) « , W 
<9r 2r2 

2n 
r ,9»j ' (9.182) 

where rg(f) is the kinetic density as defined in Eq. (9.77). 

9.5.2 Wigner transform of the pq(fi,r2) up to h2 

In the parameterized PSA-DME of s*9(fi, f2), we used the Wigner transform of pq{fi, f2) 

up to /i2 to motivate the form of Eq. (5.41). In this section, we derive Eq. (5.40). 

We restrict the derivation to the HF approximation. Refer to [204] for a recent work 

on the formalism of the wigner distribution in systems with pairing (HFB). One can 

write the scalar part of the normal part of the OBDM as 

pq(ri,f2:Xq) = J2 flfåq) <Pi(fiq) e(\q - €i) = 2Lp\ 
Cff(ri,f2) (9.183) 

where 0 is the unit step function, Xq is the fermi energy, ê  is the single-particle energy, 

j3 = it and L~l refers to the inverse Laplace tranform. C^(fi, r^) is the single-particle 

propagator which, in the HF approximation, reads 

C^(fl:f2) = £ rffcq) VÅnq) e-^i S(Xq - ei) (9.184) 
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Since the Wigner transform of the right and left hand sides should be equal, one has 

pg(R,p) = 2L-' 
v nø CS(R,P) 

8 
(9.185) 

The derivation of the Wigner transform of the density matrix up to h2 can be ob-

tained by working out the inverse Laplace transform up to h2 of the single particle 

propagator. It reads [38] 

CS(R,d = e -*Kfcr^<*>)( i + ^-[-AVq{R)^{VVq{R)f 

+ ^{p-V)2Vq(R)^ + 0(h4)^j . (9.186) 

Defining the single-particle Hamiltonian hq = — ̂ A + Vq where Vq is the self-

consistent HF potential, one can use the following relations 

J^-

7+200 n 

= S(Xq-hl), 
'7—«oe 

a />7+ioc Ø(\j-hlv) f 
a J~f—ioo 

'-'/yq Jf—ioc 

fln /•7+Joc 

dX 

w> = 5'(\q-Ww), 

yq J~f—ioc 

gn 
— 6(\q-hq

w), 

for integer n to obtain 

Ie-«fe+V?^> 
0 

L{S-*\q 
^-e-^+^AV^R) 
8m qK ' 

JH^\o W^e-HÉi+W® (VVq(R)Y 

PL 
2m 

h2 

8m 
AVq(R) 

P xS'IXq-^-Vq(R)), 

h2 
FN\2 

24m 

x 8" (A 

(W,(i2)) 

2m Vq(R) 
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r-1 %£e-«&+v«*><f.V)\(it) 
24ra 

& - ^ 2 

24m 
lp-vyvq(R) 

xS"[Xq-^--Vq(R)). 

(9.187) 

Plugging into Eq.(9.185), we obtain the Wigner transform of pg(ri,r2) up to h2 

PWKMP) =©(\ - fy) - ^AVqS'(Xq - hl) 
m (9188) 

+ 24^ [ ( V^ ) 2 + ^ ' V™5"^ ~ hw) + °^)' 

2 -» 

where /i^, = Hq — ^ — V^(i2) and the derivatives of the dirac-delta functions 

are performed with respect to Xq. Even though it is not the main target of this 

section, one can calculate the inverse Wigner transform of Eq.(9.188) to obtain the 

density matrix up to order h2. This effectively gives the extended Thomas Fermi 

approximation to pq(fi, r*2). We can call EFT-DME. The important relations one has 

to use are 
777 f) (JI\ f) 

six« ~ ^ = ¥k~F W - k^ a n d oxq = WqWF' ^9-189) 

*Vp
2 

where Xq — —^—I- Vq(R). Since the derivatives act on the dirac-delta functions, 

one has to perform integration by parts using the relation 

JdpSn(Xq-hlv)F(p,r,Xq) = (-l)"^-F(p,r,Xq)\p=PF, (9.190) 

where F(pJr.Xg) is any well behaved function and pp is the value of p that satisfies 

the equation Xq — h^ = 0. Applying these mathematical relations, one essentially 
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obtains EFT-DME of pq{fu f2) 

/ -* - \ kp oj\ {kFr) 1 q 

pq(ri,r2) = ^ 7 r — , „ + - r r ^ A r P 37T2 kFr Un2 jo(k9
Fr) - kq

Frji{kFr) 

+ i (v/4) <? \ 2 

24TT2 A;£ 
j 0 ( 4 0 - Wt

Frj1(k'Fr) + kF
2r2j2(kFr) 

24TT2 4 
fcpVKr• F -Zkq

Frjx(kFr) + kF
zr2j2{kq

Fr) + e>(/i4). 

(9.191) 

In Ref. [173], the authors make angle-averaging (with respect to the orientation of r) 

approximations, followed by the expansion of the Fermi momentum up to fø2 

kq
F = 3TT>, 

1/3 

+ Y2 ( 3 * % 
-1/3 (Vp,)2

 2Apq 

p\ Pq 

and 2{Vklf ~ ArgAfcg to obtain 

f>ETF,q(R,r) = Pq(R) 
S^ji(kq

Fr) r 

kFr 

(Vpg)s 

+ 7 2 ^ 
jo(kFr) - 6—^ 

kFr 

216 pq 

4jo(kq
Fr) - 9 

Ji(kg
Fr) 

kFr 

(9.192) 

(9.193) 

9.5.3 Generalized PSA-DME 

In section 5.3, we discussed PSA-DME of the scalar and vector components of the 

normal part of the OBDM of time-reversal invariant systems. In that derivation, the 
—> 

chosen set of DME-coordinates (R, r) were integral parts of the derivation. In addi-

tion, we had a single nonlocality coordinate, namely, r. Here, we give a generalized 

formulation of PSA-DME for time-reversal invariant systems where we relax these 

two eonstraints. This allows us to recover the DME of the nonlocal densities that 

occur in the HF energy of both NN and NNN interactions. It is to be noted that 

the three nonlocal densities that occur in the expression for the HF energy from the 
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chiral EFT NNN interaction at N2LO are of the form sq(fi,fi + x2), <iq{fi,fi + x3) 

and Sq(rx + x2,fi + x3). while for the HF energy from the two-nucleon interaction, 

the nonlocal densities are of the form <?9(fi, r^). In this notation, the NNN case uses 

the coordinates defined in Eq. (7.22). Furthermore, <;q can be either pq or sq. As can 

be seen from the coordinate dependence, the nonlocal densities that occur in the NN 

case are particular cases of the ones that occur for the NNN. In fact, all the nonlocal 

coordinate dependencies can be generated from the general case <;(fi + x2,fi + x3). 

For instance, the usual DME-coordinates (R, f) used in the NN case is recovered for 

x2 = —X3 — f/2 with fi playing the role of the center of mass coordinates. Hence, 

we give the PSA-DME for pq{f\ + x2, f\ + x2) and sq(fi + x2, f\ + x2), which we call 

generalized PSA-DME, and generate more specific cases from it. 

9.5.4 Generalized PSA-DME for the scalar part of the OBDM 

In order to obtain the generalized PSA-DME for pq{f\ + x2.j\ + x2), we essentially 

follow the same set of steps as we did in section 5.3.3. One starts by extracting the 

exponential nonlocality operator before introducing a phase factor and performing a 

Taylor series expansion up to second order 

pq(n + x2, n + £3) = eÆ(*2-*3) e*2-( V«*>+*}-(̂ 3+**> pq(f2, r3) 
r 2 = r 3 = r l 

(9.194) 

e«£<*2-*3> 1 + x2 • (V2 - ik) + f3 • (V3 + ik) 

Pq(r2,r3) 
1 / . ^ 2 

+ -lx2-(V2-ik) + x3-(V3 + ik) 
r 2= r 3 = r l 

(9.195) 

Note that for the PSA-DME developed in section 5.3.3, the next approximations 

involve angle averaging with respect to the orientation of the relative coordinate and 
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averaging with respect to k over a Fermi sphere. For details of the logical arguments 

in favor of performing these approximations, refer to that section. Here also, we apply 

exactly the same approximations. First, We define a new coordinate system as given 

in Eq. (9.1) 

x = x2 — x3, (9.196) 

X = ( l - a ) f 2 + af3 , (9.197) 

where a e [0, 1]. The essence of this parameter will be clear later in this section. 

Angle averaging with respect to the orientation of the relative coordinate, x, en-

tails performing -^ f dttg where Qg denotes the orientation of x. Let us apply these 

approximations to Eq. (9.195) term by term. 

The Leading term gets simplified as 

47T3kf cF J\k\<k^ 

where 

f dk / ^ e ^ p 9 ( r 2 , f 3 ) 
J\k\<kt J 47r 

- ng(fc* rc) p,(fi), (9.198) 

j\{kq
Fx) ji{kq

F\x2 - x3\) 
I r ø a r ) = 3 J^/-^ pin) = 3 Jir?r / ' p(n). (9.199) 

hpX Kp\X2 — X3\ 

• The linear (first-order correction) term has two origins. The first one is from 

—ik • (x2 — x3) and the second is from x2 • V2 + x3 • V3. Hence 

47r3A;̂  J f e ^ 
/ dk f^e^[-ik.x]Pq(f2,r3) = Lx{kq

Fx)pq(fx), 
f2=*r3=fl 

(9.200) 
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where 

Li(kFx) = - 3 j o ( ^ ) + 9—r? = -3jo(fcFF2-^3 ) + 9 ~ p r p =T~ • 

(9.201) 
KpX 

For the simplification of the second linear term, first note that according to 

Eqs. (9.196)-(9.197), the operator in this term, viz, $2 • V2 + x3 • V3 simplifies 

to x • (a V2 — (1 — a) V3) + X • (V2 + V 3 ) . Let us designate 

V a E a V 2 - ( l - a ) V 3 . (9.202) 

Thus, 

dfir fdQ mi 4n 
•*-**•*/£2.V2 + x 3 - V 3 dTtge 

+ X - ( V 2 + V3) 

= J o M ^ - ( V 2 + V 3 ) , 

x - V a 

which implies, 

4TT3H 

with 

/" „ d * / T^ é t 3 (^ • V2 + X3 • V 3 ) p,(r2,F3) 
|̂fc|<fci J 47r V / '•2=r3=rl 

= L2(fc«x)X.Vip,(fi), 

F «/|fc|<fc^ 

(9.203) 

L2{kFx) = 3m^l=3Mkq
F\S2-x3\) 

K pX 
1 q i -> - » i 

AÆ x 2 - x 3 

(9.204) 

• The second-order correction term is generated by the operator 
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[x2 • (V2 — ik) + x3 • (V3 + ik)] /2 , where we are not showing the phase factor 

explicitly. Using Eqs. (9.196)-(9.197), this operator reduces to 

[x • (-ik + Va) + X • (V2 + V 3 ) ] 2 / 2 • The relations 

/ ^ / ^ ' f a ( - « > ( - V . ) - 0, (9.205) 

/ l 7 / ^ " " J ( J - ^ - ( V 2 + V3)) = 0, (9.206) 

and Eq. (9.5) can be used to simplify the second-order correction as 

A^kf «/,*,<**, 

x Pq(r2, r3) 

3ji(kq
Fx) 

Z* Kj?0C 

f dk f ^*erk* 1/2[x • (-ik + V„) + X • (V2 + V3)] : 

r 2= r 3 = r l 

^ l 2 
[X- Vx] pq(rx) + L^ktøX- V!p,(fi) + L3(A£x)pg(fi) 

+ — 
^2 ji(kq

Fx) 
£ h/T^0b 

Aapa(r2,r3) (9.207) 
r 2 = r 3 = r 1 

where 

L3(k
g
Fx) 

36 - 3 (& |Æ) : 

^ KrpX 
h(kq

Fx) - Qjo(kq
Fx) 

= V a - V „ 

(9.208) 

(9.209) 

The last term involving Aa requires further simplification. Expanding the oper

ator and using relation Eqs. (9.108)- (9.109) and the definition of kinetic density 
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given in Eq. (9.77) 

Aapg(f2,f3) 
r2=r3=1 

= a V 2 - ( l - a ) V 3 p,(r2,r3) 

'•2=r3='l 
er Ap , ( f i ) -2 r , ( f i ) + i2V-J,(T=i) 

+ ^ - ^ ( Ap,(fx) - 2r,(fi) - i2V • j , ( r i ) 

- 2o(l - a)Tq(fi) , 

2a2 - 2a + 1 
Ap,(ri) - r9(fi) , (9.210) 

where we used the fact that jq{fi) — 0 for time-reversal invariant systems. 

Collecting all the contributions, the complete generalized PSA-DME for pq{r\ + 

x2, T\ + xz) in time-reversal invariant systems takes the form 

pq(n +X2, n+x3) ngtøs) Pq(n) + Ai(fcJ.a;)^-Vip,(fi) 

+ l{X-V1)
2pq(r1) 

ar + ^Up
2(kFx) ( a 2 - a + - ) A p , ( f i ) - r , ( f i ) 

+ UF
2A2(kFx)pq(f1) (9.211) 

with 

ng(fc^) 

A X ( A » 

A 2 ( * » 

3 i i ( ^ ) = 3 J ' I ( ^ F I ^ 2 - ^ 3 | ) 

KrpX kq
F\x2 -x3\ 

3Ji{kq
Fx) = 3Ji(^|f2-^3| 

fc*x kl\x2-x3\ 

1 + å ^ l 4 « 1 + 0{{kFrf), 

= 1 + 

ng(4*) 
L.jkpx) + L2(kFx) 

Iip
2{kFx) 

1 + 0 ( ( ^ r ) 2 ) 

(9.212) 

(9.213) 

(9.214) 

(9.215) 
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As a can take any value between zero and one, it can be considered as an optimization 

parameter that is to be used to select the best DME-coordinates. Refer to the next 

section for some detail on related works. 

Recovering previous DMEs of the scalar part of the OBDM 

At this point, it should be emphasized that the approximations that are used up 

to now are exactly the same as the ones that are used in section 5.3.3 when we 

derived PSA-DME for pq(fi, r^) using (R, r) as the DME-coordinates. Hence, we can 

recover the PSA-DME of pq(R + f/2,R-f/2), i.e., Eq. (5.21) by setting x2 = -£» = 

r /2 , r\ = R and a = 1/2. In this case, X = 0, x = r and Eq. (9.211) reduces to 

p , ( £ + £ , £ - ? ) ~ W0{k%r) pq{R) + ^ I r ø r ) 

+ \kfPq{R) 

7Apg(R) - rq{R) 

(9.216) 

whére U^(kq
Fr) and U%(kq

Fr) are as given in Eqs. (9.212) and (9.213), with x being 

replaced with f. In obtaining Eq. (9.216), we considered only the leading order 

contribution to A2(&|i0;). The only difference between that of Eq. (9.216) and the 

corresponding expression in Ref. [170] is the fact that Tl^(kFr) = 105 jz{kq
Fr)/{kq

Fr)z 

in the original DME. As can be seen from the series expansion, 

^ i - l + 0((kq
Frf), (9.217) 

1 0 5 7 p W « l + 0((kq
Frf), (9.218) 

\KFr) 

the two 7T—functions are similar in their leading order. Due to the (kq
Fr)2 prefac-

tor that we have in the second-order correction, the difference between the second-

order correction terms of PSA-DME and the original DME appears in terms beyond 

0{(kq
Fr)2). As noted in Ref. [170], this difference in the higher-order terms should not 
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be surprising due to the the ambiguity of DME correction terms beyond 0((kq
Fr)2). 

Hence, we have effectively recovered the DME of Ref. [170]. 

In Ref. [202]. the authors generalize the original DME of [170] as 

pq(R + bf,R-(l-b)r) ~ n g ( 4 r ) pq(R) + ^ng(fcjk) 

- rq(R) + hfPq{R) 

(b2-b+ 1/2) Apq(R) 

(9.219) 

with the same ir—functions as given in Ref. [170]. Parameter b — 1/2 recovers the 

usual relative and center of mass coordinates. To obtain this expansion from our 

generalized PSA-DME, Eq. (9.211), one sets 

n = R, x2 = bf, and f3 = - ( 1 -b)f, (9.220) 

which implies x = f and X = 0. Hence, Eq. (9.211) reduces exactly to Eq. (9.219) 

with parameter a playing the role of parameter b. Optimizing parameter b, the 

authors of Ref. [202] note that 6 = 0 which amounts to expanding about one of the 

particles, instead of the center of mass, seems to give the best accuracy for molecular 

systems. This further enforces the view that optimization of parameter a can result 

in increased accuracy of the DME. 

Further approximation with respect to X 

In the generalized PSA-DME of pq{f\ + x2, r\ + x3), our angle averaging with respect 

to the orientation of x is a well-supported step in that the scalar part of the OBDM 

is known to have a weak angular dependence on the orientation of the relative co-

ordinate [176]. If we stretch the argument and assume that the dependence on the 

orientation of the other non-locality coordinate, X, is weak, we can average over the 
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orientation of X . In this case, Eq. (9.211) reduces to 

9 
OT 

pq{r\ + x2, n + x3) = Ho(kq
Fx) pq(n) + — Iip

2{kq
Fx) 

~rq(f1) + ^kF
2A2(kFx)p(]{r1) 

1 Y2 

(a2-a + - + ^j)Apq(r1) 

(9.221) 

whose simplicity makes investigating its accuracy a worthy step. As mentioned in 

the previous section, parameter a may be optimized to reduce some of the inaccuracy 

that may result from averaging over the orientation of X . 

9.5.5 Generalized PSA-DME for the vector part of the OBDM 

The generalized PSA-DME for the vector component of the OBDM involves a signif-

icantly less algebra than that of the scalar component as we stop at the linear order 

in the Taylor series expansion. It involves exactly the same approximations as the 

ones that we used in section 5.3.4. Extracting the non-locality operator and a phase 

space factor, followed by Taylor series expansion of the operator 

5 , , „ ( r i+z 2 , f i+*3) = eÆ^2-*3)e
s2-^2-^+*3^3+«*)s, i I /(f-2,r3) 

r 2 = r 3 = r l 

ik-(xn-Xo) 1 + x2 • (V2 - ik) 

+ x3-{V3+ik) sq,v{r2,rz) (9.222) 
r 2 = r 3 = r 1 

where we truncated the expansion at first order. Since sq(f\) = 0 for time-reversal 

invariant systems, the contribution from the leading term vanishes. Likewise, the 

contributions from the linear ix2/3 • k terms vanish. Using Eq. (9.112), the defmition 

of the cartesian spin-orbit density, Jq^„, given in Eq. (9.83), one writes Eq. (9.222) 
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as 

s« , , v ( r i+x 2 , f i+x 3 ) ~ i e ^ ^ - ^ J ^ ^ J ^ C r i ) . (9.223) 

The final step involves performing the PSA over a deformed sphere that characterizes 

the local momentum distribution. Let us start from a spheroid in momentum space 

defined by the equation 

k2 k2 k2 

% - + - ^ - + - % - = l . (9.224) a{R)2 a(R)2 c(R)2 

—# —* 

For ease of notation, we write a(R) as a and c(R) as c in the following. We constrain 

the position-dependent quantities a and c by requiring that the spheroid has a given 

volume and quadrupole moment, viz, 

V, = ^3kf = ^a2c: (9.225) 

^(å) = 2J^TJ1- (9'226) 

The II—function is obtained via the integration over the phase space of interest 

n' = Jw{d'ke"rt- (9'227) 
Carrying out the integration over the volume Vq encompassed by the spheroid given 

in Eq. (9.224) can be done by using a stretched coordinate system from the transfor-

mation 

K = \KX, Ky, fCz) > K = yKXi Ky, fcz) ? (V.ZZo) 
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such that one finally obtains 

s,,„(rk + il-, ri + x3) ^ i Uf(kg
Fx) ^ S / i - W n ) , (9.229) 

where 

Tim*) - 3 ^ M = 3 J l ^ | f 2 " f 3 | ) , (9.230) 
kq

Fx kF\x2-x3\ 

and 

Setting P$(R) = 0, which consists of performing the PS A over INM phase-space, 

results in the same II—function with kF replaced by kF. For spherical systems, one 

can simplify the expression further by writing Jq^u(R) as a sum of pseudoscalar, 

vector and (antisymmetric) traceless tensor parts given in Eq. (9.165). Since in these 

systems, both the pseudoscalar and the tensor parts vanish, one obtains 

sq (fx + f2, ri + f 3 ) ^ ~ nf(før) x x J ,(f i) . (9.232) 

Hence, using Eq. (9.229), we have a DME for any type of nonlocal coordinate depen-

dence. For example, s(ri, r i + x3) is obtained by simply setting x2 — 0 , while setting 

fi = R and x2 — —x3 = f/2, Eq. (9.229) reduces to 

sqJå + \-& ~ ø - i nf(kq
Fr) J2 r»Jg4AR) , (9-233) 

where Ul(kq
Fr) is as given in Eq. (9.230), with x replaced with f. Due to the possible 

dependence of the accuracy of the DME on the specific coordinates used, one cannot 
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claim or expect the same accuracy in expanding, for instance, sq(fi,fi + x2) and 

Sq(ri + F/2,fi - f / 2 ) . 

9.5.6 Remarks on the generalized PSA-DME 

As can be seen from Eqs. (9.212), (9.213) and (9.230), the final results of PSA-

DME of Pq(fi + a?2, fi + x3) and s*9(fi + x2, fi + x3) are not separable in x2 and x3 . 

In contrast, all nonlocal densities that involve only two of the coordinates such as 

A?(fi, r2), pg(ri,ri + x2), ... led to a completely separable expansions. This can leave 

the perception that the objective of håving a separable approximation, which is what 

the DME proposes to achieve, is not yet met. 

However, pq(fi + x2,fi +# 3) and sq(ri + x2,fi + x3) appear in the HF energy from 

the chiral EFT NNN interaction at N2LO where x2 and x3 are part of the interaction 

form factors. Refer to section 7.1. In fact, the interaction does not depend on f\. 

Thus, all terms that depend solely on x2 and X3, whether they are separable in these 

two coordinates or not, can in principle be integrated out with the interaction form 

factors. The actual direct analytical integration of such terms is very difficult, if not 

impossible. Refer to section 9.11 for details on how we solve this problem. Leaving 

the technicalities for the relevant sections, it should be clear at this point that a local 

EDF will result from the application of the generalized PSA-DME of pq(ri+x2, F1+X3) 

and sq(fi + x2, fi +£3) to the HF energy of the chiral EFT NNN interaction at N2LO. 

9.5.7 The modified-Taylor series expansion 

As discussed in section 5.3.6, the modified-Taylor series approach provides a formal 

framework to extend the applicability of the density matrix expansion to non-time 

reversal invariant systems. It is obtained by replacing the coefficients of the Taylor 

series expansion of the densities with n—functions. The dimensionless variable fl is 
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used to denote the possible argument of the TT—functions. The modified Taylor series 

expansion of the densities that appear in the exact HF energy from a generic NN 

interaction reads 

Pq(R±r-) « tf(n)pq(R)±it{n)l.vRpq(R) 

sq{R±r-) « 4{Q)sq{K^±^{n)^-.V^jsq{R) 

+ \ *f (n) (^ • v«) sq(R)> 

(9.234) 

(9.235) 

(9.236) 

Jq(R ± - ) 

fl,(^±^^) 

7r0
J(fi) J,(J2) ± 7r/(fi) - • V«Jq(/?) 

ng(n)pg(Æ) ± nf(n) £ • (vi - v2 J^ft , ?2) 

+ \ nftn) 
\ 2 / - \ 2n 

P9(n , r2) 

•ng(fi)(£- Vxjf^- v2)^(f l 5r2) 
r ,

1=f'2=ii 

^(i? ± - , i? =F -) = ns(n)r,(i2) ± n;(n) - • (Vi - v2 j ^ n , r2) 

+ 2 nf (n) £ • * . ) ' + ( £ • * * sg(fi, r2) 

(9.237) 

r - 1 = r 2 =f i 

ri=f2=R 

(9.238) 

r\=r2=R 

f * 1 = f2=K 

•nf(fi)(£- V i ) ( ^ . v2} ^(n , f2) , (9.239) 
fi =ro =R 
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and for the pairing densities 

pq(R ± r-) « 4Wpq{R) ± Trf(Q) I • VRpq(R) 

~sq(R ± r-) « 4(«K(*) ± ^(") (£ • v*U(i?) 

(9.240) 

+ ̂ 4(n) ( j - vR) UR) 

pq{R±r-,RT\) « ng(fi)p,(i2) ± nf(n) - • (Vi - v2 )~Pq{n, f2) 

+ \ n§(n) 5 v, + ( 5 . v , Pg(n , r2) 

n g ( n ) ( ^ . ^ 1 ) ( ^ • VaJ^Cf l . r a ) 
fi =ro=fi 

$•„(£ ± -r R =F £) nS(fi)s,(/?) ± n;(fi) - • (Vi - v2 Jsg(n, f2) 

+ 2nKfi) 
\ 2 / - \ 2-, 

Sq(f! , f 2 ) 

ns(n) ( - • vx V2 s , ( f i , f2) 

(9.241) 

^=7=2= /? 

, (9.242) 

f 1 = r2=.R 

, (9.243) 
?1=^2=Æ 

At this point. the modified-Taylor series expansions of the densities can not be written 

in terms of the local densities defined in appendix 9.2.3 and 9.2.5. Implementing the 

steps explained in section 5.3.6, one obtains an equivalent expansion, this time with 

explicit local densities. These are 

P,(R± 2 } 

s , ( i 2 ± - ) 

rf(n)pq(R)±*ttn)l-vRPq(R) 

4(Q) sq(R) ± nm r- • VRsq{R) 

+ \*m{^-VR\ Sq{R), 

(9.244) 

(9.245) 
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Pq(R±r-,RT
r-) « ng(n)Pg(i?) ±in?(Q)f-Jq(R) + ̂ n^(n) (AP,(Æ) 

- 2 T , ( Æ ) ) -^ng(f i )T,(J2) , (9.246) 

-2Tq^R)^j - ^Ill(Q)TqAR), (9.247) 

jq(R±r-) « 4(«)/«(fl)±^(n)£-VjJ,(£) 

+ | 4 ( « ) ( ^ V « ) ?„(£), (9.248) 

+ ^2 J (n) (^ • V«) / , (£ ) , (9.249) 

and for the pairing densities 

p,( /? ± r- ) » <(fi) p?(i?) ± Trf (fl) I • VRpq(R) 
2 

+ ^ f ( l ] ) ^ . V f i j p,(£), (9.250) 

~sq( R ± r- ) « 4(fi) *,(£) ± Trf(O) I • Vfl *,( Æ) 

1 * _ / f ^ ^2 

+ 2 7 r 2 ^ ) ^ - V « J ^(-R). (9-251) 

pq{å±r-,RT\) « ng(n)pg(i?) ±mj(n)f- /„(£) + ^n§(n) ( ^ ( E ) 

-2f,(J?)) - ^ n f ( f i ) f , ( Æ ) , (9.252) 

-* -» 2 / 

«,,„ ( f l ± ^ f i ^ ) « n|(Q) s,,„(i?) ± *nf(fi) ̂  J,,^(^) + ^nf(n) \Asq,v(R) 

-2f„,„(i2)) - ^Ul(n)fqtU(R), (9.253) 
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9.6 Derivation of EDF from HF energy of local 

NN interaction 

In this section, we give detailed derivation of the HF energy from a generic local 

two-nucleon interaction and the EDF that results after the application of the DME. 

9.6.1 Central contribution 

We demonstrate the derivation of the contribution to the HF energy from the central 

part of NN interaction by deriving the corresponding expression for the spin-triplet, 

isospin-triplet channel. Making use of the spin/isospin projection operators given in 

Table 1.2, the projection of a local central interaction in this channel reads 

Ve = \ (1 + Pu) (1 + AT
2) VéHr) • (9.254) 

Plugging this in Eq. (6.2), using the definition of the OBDM (Eq. (9.70)) and its 

scalar/isoscalar-vector/isovector decomposition, we obtain 

E^N[11] = \ J dndr2V?{r) po( n ) p0(r2) - po{n,r2) po(f2, ri) 

+ E (2 P0^ Sala2 + ^(ri)-^!^) 
a\a2 

x (-po(r2) Saia2 + 25o(r2)-ØV72
ffi) 

axa2 

x ^Po(r2,n)Sai(72 + 2éo(ff2,ri).aa2a1) 

+ E ( ^ o ( r l ) + l(-l)i-q Pi(n)) (Ipofo) + i (- l ) i - 'pi(r2)) 

- E ( ^ ^ ' ^ ) + ^(-1)2-^(^1,^)) 
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+ 16 5 Z X ] \Po(ri) po(f2) 8aia2 + sh(f1).atria2 x so(r2).aff2<Tl 

-? CTiCT2 

+ Pi(ri)pi(r2)<5,71(72 + sl(ri).ff(Tl<72 x sKr^J .a^^J 

i °\u2 
+ so(n,̂ 2)-ot<71<r2

 x «o^ri)-^"! + Pi(ri,r2) pi(r2,ri) Saia2 

+si(n,r2).a<j1a2 x s K r ^ n ) . ^ ^ ) (9.255) 

To find the final, most simplified form of the above expression, we make repeated 

use of the relations listed in Eqs. (9.12)-(9.13) to obtain 

E"N\U] Jc i -II dnd^V^ir) 
9 9 3 
-^Poifi) po{r2) - - | po(ri,f2)|2 + -pi(fi)pi(f2) 

3 3 3 
- ^1 Pi(fi,f2) |2 + -s0(fi).s0(r2) - -So(r1,f2).So(f2,f1) 

+ 7Sl(n)-Sl(f2) - jSi(f1,f2).Si(f2,fi) (9.256) 

In terms of the proton and neutron densities 

^ [ n ] = l^fdndf^ir) ZPg(ri)Pq(f2) - 3p(?(f1,f2)pg(r2,fi) 

+ Sq(n) • sq(r2) - 3,(ri,r2) • s,(f2,fi) 

+ l^fdndfivptf 

(9.257) 

3 3 
2Pg(^)P9-(f2) - ^pq(ri,f2)p9(f2, ri) 

1 1 
+ 2 ^ ( ^ i ) " ^ ( f 2 ) - 2 ^ ^ ' ^ ^ ' ^ 2 , r i ) . (9.258) 

Similar derivations can be done for the other three channels. 
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9.6.2 Spin-orbit contribution 

For the spin-orbit interaction, we demonstrate the derivation for the spin-triplet, 

isospin-singlet channel. Starting with Eq. (6.2) and the projection of the spin-orbit 

part of the interaction in this channel, we can write the Hartree contribution as 

* w [ 1 0 ] = - j £ / d * Æ * V $ ( r ) f pq(r2) Vi x ^ ( 5 , ^ , % / ^ 

- - & / • 

+ sq(n) x v2pg-(f2,f2')|^=-2 

dndf2Vl°s(r)r Pifo) ( -V x Sq(fi) + i J?(ri)) 

,1 . 
+ sq(ri) x (^7pg(f2) + ijg(f2)) 

= i W"dndr2VS(r)r 
9 ^ 

Jg(n) Pq{r2) + f • sq(fi) <8> jf(r2) 

.(9.259) - - V x s,(fi) pq(r2) + -Vpq(r2) x sV(ri) 

Noting that 

J dn df2 VLS(r)r- V <8> [pq(n) sq/q(f2) ] = 0 , (9.260) 

where V = Vi — V2, the Hartree contribution from the spin-orbit interaction in the 

spin-triplet, isospin-singlet channel reads 

£S,[10] = \ E / dndriVlUr)? Jg(n)pq(r2) + sq(fi) x jq(r2) (9.261) 

The Fock contribution in the spin-triplet, isospin singlet channel reads 

&NN [10] = g ( V5 - V6 + V7 - Vs (9.262) 
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where expressing the Vt s in terms of the density matrix 

V* 

V. 

v7 

v* 

^ ^2 / d?i d?2 Vis (r) r x ^IPQ (f2a2, nai) • (ai\a\as) p9 (fi<73, f2a2) 
aVl"Z i 

^ 5 ^ / rfri dr2 V^5 (r) f x Vip9- (fio-3, f2a2) • (ai \S\az) pq (f2a2, fiffi) 
aYJ2'7Z i 

^ Yl I d n d^2 VLS ( r) ^ X ^2P 9 (f2CT4, n a i ) • (cr2 |o
r|<T4> Pg (fiffi, f2<r2) 

a\a2aA q 

]C XI / dffl df>2 VLS ( r) ^ X ^lPff ( n ^ l . ^ 2 ) • < 2̂ lalo-4) A, (f2(T4, fl O-l) • 

(9.263) 

The manipulation of the above four expressions involves repeated application of 

spin-traces. Finally, one obtains 

EN
LS%Am is/ dndr2V£v

s{r) 3,(fi,f2) • f ® V2p?(f2,fi) 

+ pq{fu r2) f <8) V2 • Sf(r2, ri) (9.264) 

Spin-orbit contribution in time-reversal invariant systems 

To recover the expression given in [170] for the contribution from the Hartree-Fock 

energy in spin-orbit interaction, it suffices to show that 

— J2ql d?i dr*2 Vig (r) Pg(^i) ^2) f x V2 • Sq(f\, f2) can be simplified as 

?/ dfi df2 VLS(r) pq(n,f2)r x V2 • Sq(fi,r2) 

?/ d f i d f 2 ^ ( r ) s</(fi, r2) • f x V2Ps(ri, f2) 

pg-(5, f2) Sg(fi,f2) • V2 x f 

E/* - ^ ! dVls(r) 
r d r 
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= ^2 I dn df2 VlQ
s(r) sq{fx ,f2)-fx V2pg(n, f2) • (9.265) 

Thus taking the above result, adding it to the terms coming from the spin-triplet 

isospin-triplet one and assuming Vlg(r) = Vig (r) 1 one obtains 

E NN 
LS II dn df2 VLS(r) f-J(fi)p(f2) 

+ i 2 ] P s,(fi, f2) • r x V2pq(ri, r2) 

(9.266) 

which is exactly the same expression as given in [170] for time-reversal invariant 

systems. Note that there is a factor of two difference between our expression and 

the expression in Ref. [170] which is due to a factor of two difference between the 

spin-orbit interaction used in our derivation and in Ref. [170]. 

9.6.3 Tensor contribution 

The derivation of the Hartree contribution from the tensor part of the NN interaction 

is trivial due to the specific operator structure, viz, 

{o\(T2\di -era2- er\a^aA) = (ØI|<7I|CT3) • er {cr2|<72k4} • er , (9.267) 

(ai<72\ <7i • a2 \a3a4) = (<Ti|^i|cr3) • ( ^ l ^ j ^ ) . (9.268) 

For example, in the spin-triplet, isospin-singlet channel, 

[̂10] = ^ / ^ ^ ^ » 3 Sq(fl) • f Sq(r2) • f - Sq(fi) • Sq(f2) (9.269) 

1This assumption is essential to obtain the form given in [170] as the authors use the same r 
dependence in both channels. 
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The derivation of the Fock contribution involves a significant number of spin-traces. 

Due to the similarity with the derivation given in section 9.6.1 for the central piece, 

we do not repeat the derivation. 

9.6.4 Leading-order pairing contribution 

Restricting the derivation to a central interaction and to the spin-singlet, isospin-

triplet channel, the leading-order pairing contribution reads 

{<3>| V^11 $ )pair = \ Y . E <J <««'« I ^ I kqlq) ««. (9.270) 
q ijkl 

Thus, 

< *I^01I * w = l E E / d * & * yc\r) 

x ( — pq* (f2(J2, rltfi) — pq (f2a2, fl&i) 

2ai la2 

-Pq* if2o2, ri ai) -— pq {f2ai,fla2) 
1<j\ 2a2 

+ ^~~Pq* ( r > 2 , t ø ) - ^ fiP ( t ø , tø)) . (9.271) 
Z(Ji Z(Tl / 

After resolving into scalar/isoscalar, vector/isovector parts and simplifying one gets 

{^\VSl\^)pair = 7 E / dndr2V$\r) \~pq(n,f2)\
2. (9.272) 

9.6.5 The resulting EDF: EDF-NN-DME 

In section 5.3.6, we discussed the basic steps that are involved in the derivation 

of a local EDF from the exact HF energy of a generic NN interaction through the 
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application of the modified-Taylor series (or any other DME). These steps are best 

exemplified by the simplifications that we carried out to obtain Eqs. (5.46) and (5.47). 

We apply essentially the same step on the exact HFB given in section 6.1 and arrive at 

a local EDF which we call EDF-NN-DME. It has three components: the particle-hole 

EDF (given in Eq. (4.11)), the particle-particle EDF (given in Eq. (6.35)) and the 

additional terms of the EDF (given in Eq. (6.36)). The couplings of the particle-hole 

part of the EDF, in terms of the notation defined in Table 1.2, are given by 

APP = \ é *H(<)2 ^ n g ) V ^ H K ) 2 - (ng)2] 

*r = (~a2
C01 + Aacii ) [ng ( I lS + n§)] 

AVPVP = - ( ^ 0 1 + | ^ n ) [ K ) 2 ] 

A" = 4^°1[(7ro)2 + (no)2] + ^?11[(4)2-(nf)2] 

ApVJ = ^[^f-ngnf] 

AVPJ = -^[tfTTif-nsnf] 

A ^ = - 1 a™ [44 + n* rrf ] + (JLocn _ 1411) [44 _ n*irf ] 

+ !a511[2af*f-n*nf] 

A™S - -f«PMMVf«Hnf(nf + n!)] 

^ = ( ~ 4 B 1 - ^ c l l + ^ 1 - f 4 1 1 ) [ n 0 * ( i « + i®] 

A" = - |^"[njnf] 

s " = (^f10 + ^flfD1)[K)a 

+ (n02] + (^af11 + ^af00)[«)2-(ng)2] 

5- = ( - l ^ - l ^ + l ^ + la^jlngcng + ns)] 
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npAp ( 3 CIO , 1 „C01 , 3 c n 1 coo \ r p p i 

4. ( —nC1° 4- — nC01 - —nCU - —nC0° U TF TTP 1 
+ (64°2 + 64 °2 64 °2 64 ̂  K^^J 

5VpVp = - ( å a " 0 + åa201 + åO 2 7 u +å a 2 0 0 ) [W 2 l 
^ = ( ^ f 1 0 - ^ f 0 1 ) [ ( 4 ) 2 + (n32] 

+ (^°f 1 1-^fD 0)[K) 2-( I«) a] 
BpVJ = \aL

2
sw[^n{ - n g n f ] + ^ K T r f 4- HgHf] 

= ^64 2 ~~ 64 2 /L^o^2 + 11o112j 

'(M 2 ~ 64 2 )i7ro7r2 - n o n 2 j 

^~16 2 8 3 ~ 16 2 8 3 ^ ° 2^ 

+ (_A a ™ + AaTio + A rn _ A arn)rn?-nn 
v 16 2 16 3 16 2

 1 6 3 n o 2j 

BV-v. = -(^r° + >f1)[(7r32] 

+(-^™ + ^ n i)rørø + n3] 
VsoVs _ / 1 „C10 , 1 ^COl 1 „C11 , 1 „COO 

— I T T Uo "T" Cio — T cio "T" ~TT Cio 
v 64 2 64 2 64 2 64 2 

16 2 16 2 ^ *' J 
D J J _ / 1 „C10 1 „C01 1 _C11 , 1 nC0O * T10 , ^ r iO 

S - (32°2 " 3 2 ° 2 " 3 2 0 2 + 3 2 ° 2 " 8°2 + 8°3 

+ ̂ 1 1 - ^ 1 1 ) [ ^ ( n ^ + nf)] 

5JJ" = ( fo^ - fon inSnf ] , 

and for the particle-particle part of the EDF 

A J J = ^ " [ n f n f ] . (9.273) 
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In the EDF that results from the additional terms, given in Eq. (6.36), only the 

conplings from the Coulomb piece are unspecified. These are given by 

Cpp = o f ( < ) 2 , (9.274) 

CpAp = \<%[<A], 

C^o = -\ac
2[{<)2], 

where in these equation af refers to using the Coulomb interaction to compute these 

couplings. 

9.6.6 Analytical couplings from chiral EFT NN interaction 

at N2LO 

In this section, we derive the analytical couplings of the particle-hole EDF (given in 

Eq. (4.11)) for time-reversal invariant systems starting from the finite-range part of 

chiral EFT NN interaction at N2LO (Eq. (6.5)). In line with the exact treatment 

of the direct part advocated in section 5.3.7, the contributions to the couplings that 

come from the Hartree part of the HF energy are not included. Furthermore, in 

conformance with the notation used in the NNN case, we use isoscalar/isovector 

notation instead of proton/neutron notation. 

The starting point for the derivation is the expression for the couplings expressed 

as a functional of the ir—functions. Note that the Fock contributions that we are 

interested in correspond to those terms that contain solely II*, i.e. no 7rf, for any 

density <j. We illustrate the derivation taking the calculation of App as an example 

= \ Jdrr2 [^01(r) (Up(kFr))2 - 3 l # ( r ) ( n g f ø r ) ) 2 ) App = - / drr2 (9.275) 

where the interaction vertices V®1 (r) and V^l{r) are given by Eq. (6.10) and (6.11). 
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The starting chiral interaction is in momentum space and hence 

App = - i - x I' drr2dqé« 
167T2 J 

3 ^ 1 ( g ) ( n ^ F r ) ) 2 (9.276) 

The subsequent step requires specifying the IT—functions which can be fixed according 

to any viable DME approach. In our case, we use PSA-DME with the ir—functions 

given by Eqs. (5.22), (5.23) and (5.36). Next, we perform the integration with respect 

to r first. This is actually an important step to see that the integrals do not actually 

diverge. In contrast, in the NNN case, it is easier to perform the integrations first 

with respect to the momentum coordinates. Refer to appendix 9.11.4 for a related 

discussion. In performing the r integrals, we define 

h(q) = Jr4dr j0(qr) {Up(r))\ (9.277) 

I2(q) = Jr4drj0(qr)np(r)Up(r), (9.278) 

I3(q) = Jr2drjQ(qr){Uf(r))\ (9.279) 

h(q) = Jr4drjo(qr){llf(r))2, (9.280) 

where q = q/kF- Upon inserting the PSA-DME ir—functions, these integrals become 

IM = h(q) = h(q) = | £ (f - 12q + 16) 0(2 - q) , (9.281) 

Q7T 

h{q) = g (2 - Q2) 6(2 - g), (9.282) 

where 6 denotes the unit step function. What remain are one-dimensional integrals 

with respect to the momentum coordinate, q. At this point, the couplings take the 
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form 

Ct
pp = - ^ Jq2dqTf(q)[l1(q/kF) + ^I2(q/kF)] (9.283) 

<T = J r Jq2dqT:\q)I2{q/kF) (9.284) 

CfAp = - ^ C f (9.285) 

C ' J = - 4 ^ - Jq2dqh(q/kF){l + ^qdq)rp(q) 

- ^Jq2dqrf(q) h{q/kF), (9.286) 

where 

rf(g) = v?tø) * = o (9.287) 

= W*{q) t=l 

with i G {C, S,T, LS}. These exchange-force form factors are given by 

VS(q) ~-

Wx
c{q) -

Vs
x(q) = 

W§(q) -

Vf(q) = 

W2(q) = 

~- Vc(q) + Wc(q) + 3Vs(q) + Ws(q) 

+ q2VT(q) + q2WT(q), 

= Wc(q) + 3Ws(q) + q2WT(q), 

= Vc{q) + Wc(q) - Vs(q) - Ws(q), 

= Wc(q) ~ Ws(q) , 

= VT{q) + WT{q), 

= -WT(q), 

(9.288) 

(9.289) 

(9.290) 

(9.291) 

(9.292) 

(9.293) 

The remaining one-dimensional integrals are calculated after plugging the chiral EFT 

NN interaction form factors (at N2LO) given in Ref. [12]. The complete expressions 

for the couplings are too lengthy to reproduce here. Consult the Mathematica files 
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of Ref. [161]. Here. we list the contribution to the couplings from the LO finite-range 

piece. As given in Ref. [12], the only LO finite-range piece is a one-pion exchange 

term. Therefore we have 

where all other components (Ve, etc.) are zero. With u = kF/mw, the non-zero 

couplings from the finite-range LO potential are: 

tfk = ~» 9t « ( ( - 2 1 + 498M2 + 64w4 - 16u6) - 12w(35 + Au2) arctan(2u) K ' 256j£u l 

+ Å (7 + 1 6 M 2 ( 8 ~ 9"2)) lo§(1 + 4"2)} ' (9-295) 

5ffi = 2 ^ } (9.296) 

< ' = " 3 0 7 2 3 / > ^ B { ( - 3 + 72B 2 + 4«') - 60u arctan(2^) 

+ - ^ (3 + 54u2 - 72M4) log(l + 4u2)} (9.297) 

Bffi = 2A$P (9.298) 

S g = 2AJ} (9.300) 

(0) 48/2m2 l (1 + 4 M 2 ) 2 

>(0) — z / 1 ( 0 ) B/0) = 2X/0) (9.302) 

which can easily be put under the form of Eq. (6.39). 

9.7 HFB equations from EDF-NN-DME 

The general formalism of HFB equations is discussed in Ref. [81]. Just like HF 

equations, they are sol ved self-consistently. In coordinate space, HFB equations for 
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general nonlocal "mean field", hq(fa,f a'), and pairing field. Aq(fa, f'a'), take the 

form 

Uq(r'a'q) 

Vq(r'a'q) 
= El 

Uq(faq) 

L V*{?aq) 

h!\ro,r'o') Aq(fa,f'a') 

-Aq*(ra,f'a') -h,q\fa,f'a') 

(9.303) 

where Uq(f' a' q) and Vq(r'o'q) represent the upper and lower components of the 

quasi-particle wave functions. E^ is the quasi-particle energy and h'q(ra,r' a') is 

defined as 

tiq(r a, f' a') = hq(fa, f' a) - Xq Saa, S(f- f ' ) . (9.304) 

In Eq. (9.304), Xq is the chemical potential which is calculated from particle number 

constraint at each stage of the self-consistent iteration [205]. In configuration space, 

the mean and pairing fields are given by 

h% 

Aq-

SE 

S£ 
8K

q* " 

(9.305) 

(9.306) 

Starting from a local HFB energy density, the mean and pairing fields become lo-

cal in coordinate space. This is shown explicitly in the next sections where we de-

rive hq(fa,r' a'), and pairing field, Aq(fa, f' a') for EDF-NN-DME discussed in the 

previous section. These derivations involve just repeated applications of functional 

derivative which is briefly discussed in appendix 9.1.6. 

244 



9.7.1 The mean field from EDF-NN-DME 

The derivation of hq(fa, f' a') in (f, er, q) space proceeds by taking the functional 

derivative 

hl = l k ^£coui+cm) ^ ( g 3 0 7 ) 
j « Spq 

*J 

where from the coordinate representation of the mean field, one has the configuration 

representation 

tiji = J ^ / dridr2v*(rlalq)hq{riai,r2(J2)iPi{r202q), 
axa2 

(9.308) 

with cfi(faq) denoting the spin up/down components of the basis <Pi(rq). Since the 

energy functional is quasi-local, it results in a local field of the form 

hq(fiffi, f2a2) = S(fi - f2) hq(n; au a2). (9.309) 

This field acts on the spin up and spin down components of the wave function through 

^T hq(f1',a1a2)(Pi{f1a2q) 
a2 

hqipi (ncTiq) , (9.310) 

and it is given by 

hqifi(fq) -V-B, ( f )V + Uq{f) + Sq(f)-a - - [Åq(f] • V + V • Åq(r)} 

V- [Cq(r) - a ] V - - [Wq(f) <g> Va + Va ® Wq(f)] 

I r i [V-Dq{r)a-V + a-WDq{r)-V] Vi{rq), (9.311) 
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where a shorthand notation for the tensor product has been used 

A ® B = ^2U AVn BWfl. The various components of the are given by 

Bq{f) = ^ = ^ h2 + A*" pq(r) + B" Pq-(f) , (9.312) 

Uq(r) = 2A»» pq(r) + ApT
 Tq{r) + ApAp Ap,(f) + A [ ApAp pq(r) ] 

- 2V • [ AvpvpWpq ] + ApVJ V • Jq{f) - V- [ AVpJ Jq(r) ] 

+ 2Bpppq(r) + Bprrq(r) + BpAp Apq(f) + A [BpAp pq(f)} 

- 2V • [BvpvpVpq] + BpvJ V • Jq(r) - V-[BvpJ Jq(r) ] 

+ « a / ^ ] ^ | - e a ( f ) 1 / 8 / 4 / 8 ( * 0 , (9-313) 

sqj,{f) = 2Asss^{r) - 2Vu[AVsVsV-sq{r)] - AJJTq,v{r) 

-2AJJF^{f) + AsAsAsq,^ + A [AsAssq,v(^] 

-2AVs°VsAsqA?) + E e ^ V - [ApVJJqA?)] 
a/3 

a/3 

+ 2Bsssq,u(r) - 2V„[BVsVsV-sq(r)} - BJJTq,u{r) 

-2BJJF^{r) + BsAsAs^{r) + A [BsAssq,v(f)] 

- 2£VsoVs A ^ ( f ) + J2 e ^ V « [BpVJJw(f0] 
a/3 

- Y, M [BVpJ V a j^(r)] , (9.314) 
a/3 

AqM{r) = -2A^jqj/{f) + ] T tVQ& [ApvJ Vas,,^(f)] 
a/3 

-EwVa[Av^,/3(r)] 
a/3 

- 2 B ' r j9-,„(r) + ^ evaP [BpVJVasq,p(r)} 
a/3 

-X^e^v«[sVpJ^(^] 
a/3 

-|;/*^V/). (9-315) 
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Cq,v(f) = -AJJsqA^ ~ BJJsq,v[f), (9.316) 

Wq4lw = 2AJJJq,^(7) - J2eafluVa[AfVJ
Pq(r)] 

a 

+ ^ e Q / w [ A v ^ V 0 p 7 ( r ) ] 
Q 

+ 2AJJ [Jq,^(r) + fe^'4-J + 2B J J J^( r ) 
a 

- Y. e ^ VQ [B^Jpq{r)} + J2 *«*> [BVpJVaPq{f)} 
a a 

+ 2BjJ [Jq,^(r) + 5vll J2 J^a] , (9-317) 

Dq.u(r) = -2AJJsq,u(r) - 2BJJsq,v(r). (9.318) 

9.7.2 The Pairing field from EDF-NN-DME 

The derivation of the pairing field proceeds by starting with the variational 

KK fe 
A*,- = j ^ . (9.319) 

"tj 

The pairing field A9 in coordinate space is defined through [81] 

Ah = J2 fdndr2^i(r1a1q)if*(f2a2q)A'1(r1auf2a2). (9.320) 
a\a2 

It is local 

A ^ r V j , ^ ) = «5(ri - f2) A'(fi;ai,a2). (9.321) 

and has the structure 

A9(f; ai, a2) = Uq{r; a1; a2) + V • Dq(r; ai, a2) V + A,(f; ai, a2) • V, (9.322) 
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where the field components read 

Uq{r\ di,o2) = 2 A" pq(f) a^nH + 2 X* f A,5,(f) - 4rg(f) j M ^ 

+ 2A[A^pq(r)}a15ai,2 

+i Y2 (^{^ki/ki) + <ri(̂ iWff2>) V^[A J J Jgi/U,(f)], 

(9.323) 

^,(r;ai,(T2) = 8 ^ p9(r) ^ V 2 , (9.324) 

4,,/» (r; ai, a2) = i^2,\ "̂2<cr2|cr̂ |cr1> + ai{ai\av\a2} j AJ3 Jq^v{r). (9.325) 

9.8 Numerical solution of EDF-HF equations in 

spherical systems 

For the preliminary self-consistent tests of the DME discussed in section 5.4.6, we 

performed self-consistent calculation of the HF equations. This calculation was done 

with the assumption of spherical symmetry, which also implies time-reversal invari-

ance. As the starting EDF, we took two different cases: (i) EDF-NN-DME with 

the Bogoliubov contributions turned off. This is what we call full-DME. (ii) In the 

second case, EDF-NN-DME is changed in such a way that the Hartree contributions 

to EDF-NN-DME are replaced with their exact counterparts, with the Bogoliubov 

contribution still turned off. This is what we call exchange-only-DME. Since the Bo

goliubov contribution is turned off in both calculations, we refer to both calculations 

as EDF-HF calculation. 

In both full-DME and exchange-only-DME, the spherical self-consistent HF equa

tions take the form 

h"<pi(rq) = eiq^{fq), (9.326) 
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where hq is the single particle Hamiltonian given by 

h" = - V • Bq(r) V + Uq(r) - iWq -V x a. (9.327) 

The only difference between the two is in the actual values of the field components: 

Bq{r), Uq(r) and Wq(f). 

9.8.1 Full-DME in spherical systems 

The components of hq for the case of full-DME are given by 

Bq{?) = {-^^-h2 + A^pq(r) + B^Pq(r), (9.328) 

Uq(f) = 2Apppq(r) + ApTrq(f) + ApAp Apq(r) + A[A<>A<> pq(r)] 

- 2 V - [AVpVpVpq] + ApvJV-Jq{f) - V-[AvpJ Jq(f)] 

+ 2Bpppq(r) + B^T-^T) + BpApAPq{r) + A [BpAp pq{r)] 

- 2V • [BVpVpVpq ] + BpvJ V • Jq(r) - V- [ BvpJ Jq(r) ] 

+ ̂ Jdr'0^-e^-f3pl^, (9.329) 
Wq = AJJJq(r) - V [A"VJpq(f}] + AvpJVpq(7) - AjJ Jq(f) 

+BJJJq(f) - V [BpwJ pq(r}] + BVpJfpq(r) - BjJ Jq(r), 

(9.330) 

—* 

where V and A operators that occur in the fields probe only the radial part as we 

are dealing with spherical systems. It should be noted that (i) all the local densities 

depend only on the magnitude of f (ii) all the derivative operators are not meant to 

act on the wave functions, they only act on the densities. All the couplings such as 

App and Bpp are as defined in section 9.6.5. 
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9.8.2 Exchange-only-DME in spherical systems 

In this case, the field components read 

Uqlf) 

(A ~ 1) fc2 

2Am 

Idf' 
+ f* 

h1 + A^p^f) + BpTpq(r), 

2 V^pp(\f- ?'\)pq(r') + 2 V^pp(\f- f'\)pg-(f') 

VirP(\r-r'\){r'-r)-Jq(n 

(9.331) 

+ VirP(\r-f'\)(f'-f)-J,(r') 

+ 2Åpppq(f) + Å^Tgir) + ÅpApApq{r) 

+ A [ÅpAppq(r) ] - 2 V • [ÅvpvpVpq ] + ÅpvJ V -Jq{r) 

-V-[ÅvpJ Jq{f}] + 2Bpppq{r) + B^r^r) + B"A" A^-(r) 

+ A [ BpAppq(r) ] - 2V • [BvpvpVPq] + BpvJ V • Jq{r) 

- V - [ £ V ' J J , (r)] + e 2 J d r ' ^ l - e 2 ( § ) 3 p ) ( r ) , (9.332) 
r — r ' 

W„ = Jdf' \[VirP(\r-r'\)Pq(r')+ V3'pp(\r-r'\)pq(r') 

+ ÅJJJq(r) - V [ÅpVJpq(r}] + ÅVpJVpq(r) - ÅJJ Jq(f) 

+BJJJq(f) - V[BpVJpq{r)] + BvpJVpq{r) - BJJ Jq(r) .(9.333) 

In this case, the couplings Åq 2 and B™ (for any bilinear combination of local den-

sities, <^2) are obtained from the corresponding Aq
q and B™ couplings given in ap

pendix 9.7 by setting Hartree contributions to zero. Note that, according to our 

notation, Hartree contributions are expressed exclusively in terms of 7r (the small let

ter 7r—functions) while the Fock ones are expressed in terms of II (the capital letter 

7T—functions). 

For the numerical result reported in this work, we evaluate the 3D-integrals, which 

reduce to 2D for spherical systems, directly using Gauss-Legendre integration tech-

nique. An alternative is to solve the corresponding Helmholtz problem [206]. 
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9.8.3 Harmonic Oscillator basis expansion method 

In the numerical solution of the single particle HF equations, the spherical harmonic 

oscillator basis expansion method is used. Coupling the spin and angular momentum 

to a total angular momentum, the basis are given by 

M?> O) = ^ - fiJWr) xl/2 , (9-334) 

where 

fi — (nljmr) refers to the single particle quantum numbers 

" W ) = E (IsmmslJmjYrWxT/h (9-335) 
mims 

with Rni(r) is defined in appendix 9.1.4. In the basis expansion method, one expands 

the HF single particle states,\ipa), in terms of the basis states, |<^) 

M = E Cl l̂ >> (9-336) 

where C£ are the expansion coefficients. The basic steps in a single iteration of the HF 

self-consistent calculations is (i) the calculation of the matrix elements of the single 

particle hamiltonian (ii) the diagonalization of the hamiltonian matrix to identify the 

spectrum (iii) updating the single-particle fields or expansion coefficients using one of 

the available schemes to drive the calculation towards convergence. The form of the 

matrix elements for each of the three parts (the kinetic, central and spin-orbit parts) 

of the single particle hamiltonian listed in Eqs.(9.327) is given below. Of course, the 

calculation is performed self-consistently. 
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Matrix elements of the kinetic part 

By the kinetic part, we are referring to the V • Bq(r)V term of the single particle 

field. The corresponding matrix elements read 

(V|V-59(r)V|^) = Jdrr2^f-( j 2 Rn'l' ( ° D ( \ d R"-
dr r2 -=-*- -~-Bq(r) -r 

r v or or r 

'- + W& + 1)?*) 

x S„f S i S 16 i, 
11 i? mm T-r ' 

(9.337) 

where ri = (n'1'j'm'r') and ji — (nljrnr). One can be tempted to use the exact 

relation one has in spherical harmonic oscillator basis for kinetic energy operator 

T = -h2/2mA 

hui 
(2n + l - 1/2) if n = ri, 

(<V|71<M = V \ VN(N + l + V 2 ) if \n-ri\ = 1 N = min(n,n'), 

if ln' — ni > 1. 

In order to make use of this relation, one writes (ø„/|V • 2?9(r)V|<^,) as 

<^/|V-B,(r)f|^> = ( ^ I V ^ ^ J - V I ^ + ^ I ^ ^ A I ^ ) , 

where one can write (<f> /|59(r)A|ø / i) as 

(9.338) 

|B,(r)Atø„> = 5>M/|B,(r)|0„)fø,|A| 

2m 
^ < ^ , | 5 g ( r ) | ^ ) ( ^ | f | ^ > . (9.339) 

Finally, using the exact kinetic relation in Eq. (9.339) and plugging in Eq. (9.338), 

one obtains a simplified formula for the matrix element. This is exact in the ideal 
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case of both no truncation of the basis states and a box of infinite size. In practical 

calculations, one has to truncate the number of basis states and also use a finite-

sized box. These truncations make the use of Eq.(9.339) numerically unstable and 

erroneous2. This is the case especially when the inverse-effective mass term. Bg(r), 

is very different from 1 inside the nucleus. For cases where the inverse-effective mass 

remains more or less the same as the inverse bare nucleon mass, using Eq.(9.337) or 

Eqs.(9.338) and (9.339) give the same results for the matrix elements. 

Matrix elements of the central potential part 

The matrix element for the central potential part of the single particle field, Uq{r), 

reads 

(WUMM = Jdrr"^fuq(r)?fållf8J3f8mm/STT/, (9.340) 

where again where //' = {n'l'j'm'r') and /x = (nljmr). 

Matrix elements of the spin-orbit part 

The matrix element of the spin-orbit part of the single particle field, iW • V x <r, reads 

( ^ ^ • V x a l ^ ) = - ( j ( i + 1) -1(1 + 1) -l)Jdrr^\Wq(r)\^ 

x ^ / O ^ ' , (9-341) 

where again n' = (n'1'j'm'r1) and \i = (nljmr). 

2This must be due to the practical violation of the completeness relation and the use of a finite 
box size. It can be shown numerically (by increasing the box size) that effect of the later is minimal. 
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9.8.4 Seif-consistent iterations and convergence 

As can be seen from the results of the matrix elements for the three parts of the 

single-particle fields, the hamiltonian couples basis states only within a single / — j 

block. Hence, in the actual numerical solution of the HF equations, one diagonalizes 

each l — j block independently. Of course, the other parts of the calculation will 

involve all the relevant l —j blocks. To drive the calculation towards convergence, we 

implemented both Broyden's method [194] and Imaginary-time method in separate 

calculations. After convergence, the results of the two methods usually agree to three 

decimal points, and hence the results reported in section 5.4.6 have been obtained 

using both methods. 

9.9 The HF energy of chiral EFT NNN interaction 

at N2LO 

Here, we give a few remarks on the symbolic derivation of the HF energy of chiral 

EFT NNN interaction at N2LO and give the complete expression for non time-reversal 

invariant systems. The corresponding simplified expressions for INM, PNM and time-

reversal invariant systems are also stated. 

9.9.1 Remarks on the symbolic implementation 

The details of the symbolic derivation of the HF energy from the chiral EFT is 

discussed in Ref. [156]. In addition to automating a tremendous amount of spin-

isospin and other algebraic steps, we have demonstrated that the approach can be 

generalized to treat nonlocal interactions such as the quasi-local Skyrme interactions. 

There are several extensions of the symbolic derivation that can be made in the 

future: (i) One can envision expanding the work in such a way that first-order pairing 
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correlations (due to the NNN interaction) are treated along with the HF part, viz, 

performing HFB (Hartree-Fock-Bogoliubov) calculations. Combining this extension 

with proton-neutron mixing, one can have a start- ing Skyrme-like functional that 

can be used to handle proton-neutron pairing correlations as discussed in Ref. [207]. 

(iv) Implementing a similar scheme to treat four-nucleon interactions can also be one 

area of extension. 

9.9.2 HF energy from the E-term 

Direct part 

The direct part, which comes from the E-term, reads 

{V^E4I1 = \E jdrPo(r)pl(r) (9.342) 

Single-exchange part 

The contribution from the single-exchange part, which originates from the E-term, 

reads 

(v3T
E'lx) = -\E f dr 3pl(f) + 3p0(0p?(r) + 3po(r)so(f)-3o(f) 

-po(r)si(f) -5i (r) + 4 px (r) s0 (r) • s i (r) (9.343) 

Double-exchange part 

The contribution from double-exchange part of the E-term reads 

(VS**) = YQE fdf Spllf) + Po(f)pt(r) + 9p0(r)s0(f)-s0(^ 

+ Po(r) si (r) • si(r) +2 px (f) s^ (r) • s0(r) (9.344) 
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E-term contribution for specific systems 

In symmetric INM, the HF energy from the E-term reduces to 

(V^E'mM) = '^EJdfm. (9.345) 

In unpolarized PNM (pure neutron matter), the HF energy from the E-term vanishes 

/UHF,E,PNM\ n tn OAR\ 

{V3N > = 0, (9.346) 

which is due to Pauli exclusion principle. In time-reversal invariant systems, the HF 

energy contribution from the E-term takes the form 

{Vm } 16 J dr pm -Po(f)fit(f) (9.347) 

9.9.3 HF energy from the D-t erm 

Direct part 

The contribution from the direct part of the D-term reads 

/3 7 
/T,HF,D,d»rv _ -9A Cp 1 [,-.,-. f 1 ^ . t & . ( f r « ) ) %<& 
{V™ } ~ ^JlJfKiJ 2 3 J W 93e W^i 

x Po(r2) sUr2) sUrs) • (9.348) 

In symmetric INM, there is no contribution from this term. Likewise, for time-reversal 

invariant systems where So/i(f) — 0, the contribution from this term vanishes. 
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Single-exchange part 

The contribution from the single-exchange part of the D-term reads 

rø HF,£>,lx\ -gA CD 1 

m PA, 4 / ^df3 / 7 ^ ^ e-3(^3--2) - & L 

x - po(rz,f2)sf(f2)s'l(f2,f3) 

- i ea^ s%(r3, f2K(r 2 , r3)s?(r2) 

- Pi(r2, r3) s3[(f3, f2)s1{f2) - pi(f3, f2) s2(r2, f3)sf (f2) 

+ ze^^ ( f 2 , r 3 )<( f3 , r 2 ) S f ( f 2 ) - pi(r2,f3)3S(f3,f2)5f(f2) 

- 2 Po(r2)si (r3,f2)s7(r2,r3) - - ^ M ^ P i ^ f a ^ f ^ f g ) 

+ ^ e"7" ?*> P o f t K f o , r 2 )^ ( r 2 , r,) 

- g Po(r2)4(^3, r2)s3f(f2j f3) 

+ /to(r2)s?(f3,r2)s7(r2,f3) - -^7/9o(r2)po(r3,f2)po(r2,r3) 

+ Sfr Po(r2)pi(r3, r2)pi(r2, f3) 

+ 3 « ^ ^ ^ ( ^ s« ( f?3 j f 2 ) s - ( f 2 ) 5 ) 

- e^" e ^ p0(r2) s?(r3, ^ K f ø , f3) (9.349) 

For symmetric INM, the expression simplifies to 

<^3 

HF,D,Lr,INM\ _ ~9A Cp ^ 

' ~ 4 /? /JA, 4 3iV / df2df3 f j^dqs e^-^-n?) ^ L 
7 i (2TT)3 93 + "4 

x 2 Po(r2)po(r3, f2)po(r2) r3) (9.350) 

while for unpolarized PNM, one has 

/T/HF,D,la:,PNMv 
\V3N I iJU/Wl^^Æ -9A CD 1 

4/i 

- 2 Pn(r2)pn(r3, f2)pn(f2, f3) (9.351) 
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In time-reversal invariant systems, using So/i(r) = 0, one obtains 

/irHF.D,lx,TRU 
\ VZN I T-HT1 f**** fjh^^^^S 

2 /2AX AJ J (2TT)3 qi + ml 

-9A CD 1 

Vi 

x <W Po{r2)p0(r3,r2)p0(r2, fa) 

+ 2 før Po(r2)pi(r3! r2)pi(r2, f3) 

+ 1 t^
v f* pofaKfo, r2)s^r2, f3) 

po(r 2K(f 3 , f 2)^(f 2 , f 3) 

- 2 e07" ?* Po(r2)^(f3, f2)Sr(r2, r3) 

+ 2 Poif2)s1 (f3, f2).s]'(f2, f3) (9. 

Double-exchange part 

The contribution from the double-exchange part of the D-term reads 

/ T / HF,n , 2 x \ 
\VZN I 

*f% f^x 16 J J (2TT)3 qi + ml 

3 fø7 Po(r2)po{r2, f3)po(f3, r2) 

- føy Pi(r2)po(r2, r3)pi(f3, f2) 

+ 3 po(^2)so fø, f sWfø , r2) 

- 3 ea^ é*" Po(r2)^(f2, f 3)^(r 3 , f2) 

- A)fø)«i (r2, f3)s?(f3, f2) 

+ e^" ^ " po(f2)s?(r2, r 3 K(f 3 , f2) 

+ 6po(r2,f3)4(r2)^(r3 ,r2) - 3(^po(r2,f3)sJ(f2)s|J(r3,r2) 

+ 3<J/^/tto(f3,r2)s{J(r2)s2(r3,r2) - 2p1(f2 ,f3)4(r2).^(f3 ,f2) 

+ fø7/)i(f2,r3)sj(r2)s3'(f3,r2) - <J/j7pi(f3,f2)sJ(f2)s7(r2,f3) 

- j3 e^l^ ê "3A»4 e " 4 ^ 5Jl (f2)sj2 (r3) f2)s^ (f2, r3) 
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- iZ e" l^ e^"3"4 e ^ " SJ1 (f2, r 3 ) ^ 2 ( f 2 ) 4 3 (r3, r2) 

+ i6 e" l^ « W 4 €W s J l (f2)^2(f3, f ^ 3 ( r 2 , f3) 

+ 7 e " l ^ f"2"3"4 e"4T" 4 1 (r2)^2(f3, f2)5i3(f2, r3) 

+ j ^1"" e^3"4 €W SJ1 (f2, f3)4'2(r2)43(f3, r2) 

- i2 e ^ " e ^ W e^4^ s^1 (f2)^2(r3 , f2)^3(f2, f3) 

+ 3 <Vr Pi(r2)p0(r3! r2)pi(f2, f3) 

- <^7 pi(f2)p1(f3, r2)po(r2, r3) 

- Pi(r2)so (^2, r i W (r3> r2) 

+ C 
.071/ wØv Pi(r2)s%(r2,r3)sf(r3,f2) 

+ 3pi(f2)sjJ(f3, r2)s7(r2, f3) 

_ 3 e«7„ ̂  p i( f2)s-( f3 , f2)s-(r2, fg) 

-2p 0(r 2 , f 3)sf(r2)4(f 3 , f 2) + 6frpo(r2,r3)s%(r2)sl(f3,r2) 

+ 33/3-, Po(r3,r2)sf(f2)s2(r3}r2) + 6pi(f2,f3)sf(f2)s],(f3,f2) 

- 3 ^ 7 p i ( r 2 , f 3 ) s f ( f 2 ) s ^ ( f 3 , r 2 ) - < ^ 7 p i ( f 3 , f 2 ) s f ( f 2 ) ^ ( f 2 , f 3 ) 

+ i e"10" ̂ 2"3"4 e^T" SJ1 (r2)^2(r3 , ?2)s^{r2, r3) 

+ i fl?" &WA W SJ1 (f2,f3)^2(r2)^3(f3, f2) 

- i2 e " ^ " e"2"3"4 c"4T" s j l ( f 2 ) S i 2 ( r 3 , r 2 ) s ; 3 ( f 2 , r3) 

- z3 e " ^ " e ^ 3 " 4 e ^ " SJ1 ( f2 ) <£2 ^ ^ 3 ( ^ ^ 

- i3 e " ^ e"2"3"4 e"4T" s*1 (f2 , f 3 ) ^ 2 ( f 2 ) s j 3 ( f 3 , r2) 

+ z6 c " l ^ ^ 2 ^ 4 e"4T" s j l ( f 2 ) ^ 2 ( f 3 , r 2 )3 i 3 ( f 2 , f , ) (9.353) 

In symmetric INM, the contribution reduces to 

\V3N ) = 
-9A CD 1 

4/, !^:^/^/^-% , ? 3-? 2 ,ra 
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x 3po(r2)p0(r2, r3)po(r3, f2) (9.354) 

while for unpolarized PNM, one has 

/1/HF,£>,2x,PNMv _ ~9A Cp 1 [,-.,-* f 1 , -> * f a . 7„ ^ - ( ^ W o ) ?3 
gl + mj 

x 3 pn (r2) p„ (f2, f3) pn (f*3, f2) (9.355) 

For time-reversal invariant systems, using the relations SQ/\{T) = 0 and po/i(r2,r3) 

Po/i(r3,f2), one obtains 

/T/HF,D,2a:,TRI\ 
\V3N I 

4/^ / M * 16 J J (2TT)3 gg + ml 

x 3 5^7 po(f2)po(f2, f3)po(r3, f2) 

+ <^7 pi(f2)po(f2, f^pxirz,^) 

+ 3 po(r2)so (^2, r3)s2(f3, r2) 

- 3e Q ^ e ^ pb(r 2K(r a , r 3K(f 3 , ?2) 

- Po(r2)sf (f2, f3)sj(f3, f2) 

+ ^ f*v Po(r2)^(^2, ?3K(r3, f2) 

+ 2 pi(r2)s5(f2, r3)s7(f3, f2) 

- 2 e
Q ^ e ^ p 1 ( f 2 K ( f 2 , r 3 ) s - ( f 3 , r 2 ) l . (9.356) 
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D-term contribution for specific systems 

Combining the rcsults obtaincd for the D-term. the contribution to the HF energy of 

symmetric INM reads 

/T/HF,£UNM 
\V3N 4/1 f^x 16 i J (2TT)3 qi + ml 

x -3pQ{r2)po{r2, r3)po(r3, f2) (9.357) 

Combining the results obtained for the D-term, the contribution to the HF energy of 

unpolarized PNM reads 

<^3 3iV 
-9A CD 1 
4 / 2 ftK 16 

I dr2df3 [-L^dq3e^3-r2)«L^ 
J J (2TT)3 q£ + ™% 

x -3 pn{r2)pn (r2, f3)pn (r3, f2) (9.358) 

where pn(f) and pn(f,f) refer to the local and non-local parts of neutron matter 

density. In time-reversal invariant systems, the HF energy contribution from the 

D-term takes the form 

/T/HF,.D,TRI\ 
\V3N I I*™?* f TYTsdtie"3(frt) -É1! 

-9A CD f 
4 / 2 f*Ax 16 

x - 3 Søy po(r2)p0(r2, r3)p0(r3, f2) 

+ 2 8^ Po{r2)pi{r2, r3)px(r3, f2) 

+ Søy pi(r2)po(r2, r3)pi(f3, r2) 

- 3 po(r2)sQ (f2, f3)32(r3, r2) 

+ 3 e a ^ e ^ p o ^ a ) ^ ^ , r s K f o , f2) 

+ Po(r2)sf (f2, r3)s7(r3, f2) 

- 6Q^ e"*" A,(r2K(f>2, nK(?3, r2) 
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Pf-r =*\cnt~ zf + 2pi(f2)s0(f2, f3) sl {f3, f2) 

- 2 é^ e ^ P l ( r 2 ) ^ ( f 2 ; f3)S-(f3, r2) (9.359) 

9.9.4 HF energy from the C-term 

The HF energy from the C-term of the chiral EFT N2LO 3NF can be grouped into 

two groups: a D-like term and remaining terms (which we call R-part). This grouping 

originates from the operator structure of F"£ given in Eq.(2.20). The D-like term is 
2 

associated with 5ap [ —4 l £ + 2 -§<£•<?} ] whereas the R-part relates to -feQ/37r^ ak • 

(<& + Qj)- In the following, the HF energy from the various parts of the C-term are 

given. 

Direct par t 

The contribution from the D-like piece of the direct part is 

{V^CDMr} = (j£j 2 1 J dfid^dPz J j±y6dq2dq3 e ^ V D e^3-n) 

xpo(n)«f (r2)sj(f3). 

, ciml c3 _ _' 
- 4 - 7 2 - + 2 — q 2 • q3 

J-K iTT 

(9.360) 

For both symmetric INM and time-reversal invariant systems, this contribution van-

ishes. The R-part contribution from the direct part vanishes 

(V™'CR4ir) = 0. (9.361) 

Hence, the direct part vanishes for spin-unpolarized INM/PNM and time-reversal 

invariant systems. 
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Single-exchange part 

The contribution from the D-like piece of the single-exchange part reads 

/ T / H F ^ D . I X X 
\V3N I 

9A 

2/, 
'A \ J dfxdr2dr3 J J^y;dq2dq3 e^^V e ^ 3 - l ) 

x 
4 <& 

(<å + ™%)(<å + ml) 
drn^ c3 _ _ 

-4—f2~ + 2 7 2 ^ 2 • 93 

x -po(f3 ,ri) «i(r2)s]'(fi,f3) 

- i (Ti 4(r2)s£(r3, f iK(fi,f3) 

-Pi(n,f3)sf(f2)32(f3 jr i) - Pi(r3,ri)5f(r2)s2[(ri,f3) 

- 2 ^ 0 ( ^ ) ^ 1 ( ^ ^ 2 ) 5 1 ( ^ 2 , ^ 3 ) - - < ^ / t t o ( F i ) / 9 i ( r 3 , f 2 ) p i ( f 2 , f 3 ) 

+ - e ^ e ^ ^ ( f i K f a , T^Kfa , r3) 

- 2 A>(ri)s?(r3, r2)sl{r2, r3) 

+ A>(n)s?(r3,r2)s7(r2,r3) - -5fapo(ri)po(r3,r2)po(f2,Tz) 

+ S& Po(ri)pi(r3, r2)^i(r2, f3) 

+ I e ^ e ^ P o ^ ) ^ , f2)s^f2, f3) 

- e " ^ " po(n)^(r3 > r2)st{r2^) (9.362) 

For INM, this expression reduces to 

/T/HF,CD,lx,INM\ 
\V3N I 

9A 

2/, 
\-\ -A Jdndf2df3 J^dq2dq3én^2-h)é^^i) 

x 

x 

P 7 
Q2Q3 

få + ml)(<å + ml) 
x 

. Ci ra2, c 3 ^ ^ ' 
-4 -^2 - + 2-^g2 • q3 

J n J-K 

~ 2 Sfr P o ( n ) P o ( r 3 , f2)po{f2, f 3 ) (9.363) 
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while for unpolarized PNM, one has 

(v̂ ,CD,lx,PNM) = ^A_y 1 jdfldf2df3 I ^d^d^^^-n^n^l) 

X 

X 

4QI \ACJUÉL + oSLff a 
(4 + rnlM + rnDl f> +Zff2'Q3. 

3 . 
<Vy Pn(n)pn(r3, f2)Pn(f2, f 3 ) (9.364) 

For time-reversal invariant systems, it becomes 

/ T / H F , C D , 1 X , T R I \ 
\V3N I i£) I / ^ i ^ r f r 3 J -^dq.dq.e^^-rVe^rs-rt) 

x 
13 7 

ml (gl + m2)(g| + m 2 ) 

3 

- 4 — ^ - + 2—q2 • q3 
J ir J-K 

X Sfr Po(ri)po(r3, r2)p0(r2, r3) 

1 
+ g ̂ 7 A)(n)Pi(^3, r2)pi (r2, r3) 

1 3 
+ ^Po(ri)sf(r3,r2)sJ{f2,r3) - -po(r i )4(r3 , r 2 )^(f 2 , f 3 ) 

+ f «^V7* PoftKft, r2)^(f2, f3) 

- 2 e " * ^ Po(ri)^(f3, f2)S-(r2, f3) (9.365) 

The contribution from the R-part of the single-exchange piece reads 

Æ' C R ' 1 X > dfi dr od f-. 1 « ' 2 « ' 3 / -^dq2dq3 én^2-n) é^{fz-n - f i ) 

x 

/?i /32 71 70 
fe fr <?3 % 

(g| + m2)(g| + m2) 

2fJ fl*]* 

2s{1 (f2) f - 57172 e '^2 ^ ( r - , r l K t n , f3) 

+ ^ 2 7 2 6 ^ 1 ^ ( f 3 , f 1 ) ^ ( r 1 , f 3 ) + e ^ 2 ^ 1 ( r ^ n K ( f 1 ; f 3 ) 

+ £71726^2^(r-3,^^(fi,f3) - ^ 2 7 2 e^ i 4fa,n)sUn,?3) 

-e^"s^{r3lfx)s\{rx,r3) - i^^p^r^r^s^^f^ 
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- i ^ T g P o ^ f i W ^ f i i f a ) + i57 l 7 2pi(f3 , f i)s0
2(r i , f3) 

- i ^ ^ p x ^ ^ ^ S o ^ f i , ^ ) - i8lll2pQ{fi,n)sl
2{fi,fl) 

- i ^ 2 7 2 Po(n , r 3 ) s i 1 ( r !3 ,n ) + i57 1 7 2pi(r1 ,r3)s0
2(f3 !f1) 

( -Si 2 ( r3 , r 2 )s i 2 ( r 2 , r 3 ) + So2(^3,r2)si2(f2,r3) 

-Si 2 ( r 2 , r 3 )s i 2 ( f 3 , f 2 ) - £/3272Si(r2,f3)si(r3,f2) 

+ «i2 (r2, r 3 ) 4 2 (f3, r2) - 5 ^ s(J(f3, f2)si (f2, f3) 

+ i e^2 Po(f3, f2)S?(f2, f3) - i ̂ <1H Pl(f3, f2K(f2, r3) 

+ i e^2^2p0(f2 , f3)^(r3 , f2) - i e ^ ^ p x ^ ^ s r ø , ^ ) 

- ^272 A>(r2,f3)pi(r3,f2) + <^72Po(r3,r2)pi(r2,f3) 

(9.366) 

The contribution of the R-part of the single-exchange piece vanishes for both spin-

unpolarized INM/PNM and time-reversal invariant systems. 

Double-exchange part 

The contribution from the D-like piece of the double-exchange part reads 

(V3 
HF,CD,2x\ 

3N I o£) ^ Jdf^df* j ^dq2dqzén^2-h) én^-^ 
/3 7 

{<å + ™i){<å + ™D 
cxml c3 _ J 

- 4 — ^ - + 2—q2 • q3 f2 f2 
J n J ir 

X 3£/37 po(f2, ri)po(r3 , f2)p0{fi, f3) 

- Sp-,- Po(r2, n)pi{r3, f2)pi{fl, f3) 

+ 3 po(f2, Fi)sJ (f3, r 2 )^ ( f i , r3) 

- 3 É " * V " ' p0(r2, fiKfo, **«)<(*, f3) 
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- Po(r2, ri)s?(f3, f2)s7(fi, r3) 

+ e " ^ " po(f2, f=iK(r3, ^ K T n , r3) 

+ 6p0(fi, r3)s% (f2, fi)s2(r3, f2) 

- 3 ^ 7 po (ri, r3)so (^2, r*i)^(r3, f2) 

+ 3^37 p0(r3, r2)s0
3(r2, ri)s2(fi, f3) 

- 2 pi(fi, r3)s5(f2, ri)s?(r3, f2) 

+ 5/37 Pi(n, f3)s0
3(f2, ri)s?(f3, f2) 

- <^7 pi(f3, r2)s%(f2j fi)sl(fi,f3) 

+ 3 ^ 7 p0(r3, f2)pi(f2, fi)pi(Fi, r3) 

- 5/37 Po(n, f3)pi(f2, fi)pi(f3, f2) 

+ 3 pi(f2, ri)sg(f3, f2)s?(fi, f3) 

- 3 e ^ e ^ pi(f2, fi)<(f3, f2)<(fi , f3) 

- Pi(r2, fi)sf (f3, f2)s2(fi, f3) 

+ É ^ V » " pi(f2, fi)^(f3, f 2)^(f i , f3) 

- 2 p0(fi, f3)sf (f2, Fi)s2(r3, f2) 

+ <$ø7 p0(fi, f3)sf (f2, fi)s?(f3, f2) 

+ 3^-y p0(f3, f2)s1 (f2, r D s ^ n , f3) 

+ 6 pi (ri, f3)sf (f2, ri)4(f3 , f2) 

- 3fø7 pi (ri, f3)sf (f2, fi)sj(f3, f2) 

- 5/37 pi(f3, f2)sf (f2, fi)so(fi, r3) 

+ i3[s0
i l(fi,f3)so2(f2 ,f1)so3(f3 ,f2) 

- 3 sil(fi,f3)sj2(f2,fi)si3(f3,f2) 

+ «i1 (fi, f3)s^2(f2, fi)sj3(f3, f2) 

- g s j 1 (fi, r3)si2(r2,fi)sj3(f3,f2)] 
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x r_eA t3^iM4e/3M4^e7/'2 l / -f e^/ i3/ i4e/*2'*4''e' , ' ' il1 ' — ^^4e^lV^^2V 

— e T ' i 3 ' J 4 e ' i l ' i 4 ' /
e ^ 2 t / l (9.367) 

For symmetric INM, this reduces to 

/T/HF,CD,2x,INM\ 
\V3N I = ( ~ ) ^JdridridfsJj^d&d&eW^-Vt&^-V 

x 

x 

P 7 

(q% + ml)(qi + ml) 
- 4 — ^ + 2—g2 • g3 f 2 ' f2 

J ir J ir 

3<$/j7 po(fi, f3)p0(f2, f1)p0(r3 , f2) (9.368) 

while for unpolarized PNM, one has 

/T/HF,CD,2x,PNM\ 
\V3N I = (jj-) ^ J dnd^drs f ~J^dq2dq3 e ^ 2 - i ) e ^ 3 - l ) 

x 

x 

4 <£ 
(<å + ™%)(q$ + rn*) 

- 4 — - + 2—q2 • 9 3 

3S01 pn(n,r3)pn(r2, ri)pn(r3, f2) (9.369) 

For time-reversal invariant systems, the expression given in Eq.(9.367) can be simpli-

fied only slightly. The reason is the phase factor e^2-(r2_rlVl'3-(r3~rl' prevents one 

from treating f\ on equal footing as f2 and r*3, i.e. even though one can interchange 

f*2 and r*3 and recover the same expression, the same can not be said of f\ and f2 or ri 

and f*3. This is further compounded by the fact that the HF energy of the C-term's 

double exchange involves invariably three non-local scalar/vector densities. Another 

simple interpretation of this is, most if not all of the available symmetries in the co-

ordinates have already been utilized in Eqs. (7.13)-(7.15). Hence, the corresponding 

expression reads 

/T/HF,CD,2x,TRI>, 
\V3N ) ff) 1̂  f dffldf2df:i J J^dq.dqse^^-^Ve^^^V 
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x 
li 7 

92 93 cxm% c3 
4 — T J - + ^-7^92 • 93 

•/7T •> 7T 

3Vr PO(^2, n)po(f3, r2)/Oo(ri, f3) 

- Søy Po (f2 ,ri)pi (f3, f2)pi (fi, f3) 

+ 9p0(f2, fi)sj(f3, r2)s2[(fi, r3) 

- Se^e^ p0(r2, ?iK(r3, r2)s%(n,r3) 

-3p0{r2, f1)s1(f3,f2)s'l(f1,r3) 

+ fffT"' poif2, nK(?z, r 2 K ( f i , f3) 

- 35&y po(n,r3)s%(r2, fi)sj((r3, f2) 

+ 3 ^ 7 /oo(f3, r2)s5(r2, Fi)sJ)(fi, f3) 

- 2 pi (fi, r3)sj(r2,fi)s7(f3, f2) 

+ ^ /Ol(fl, f3)So (^2, fl)s?(f3, f2) 

- Søy pi(f3, r2)sj(r2, ri)s7(fi, f$) 

+ 3<$37 A)(r3, f2)pi(r2, fi)pi(fi, f3) 

- <5/j7 Po(fi, f3)pi(f2, fi)pi(f3, f2) 

+ 3pi(f2, fi)sj(f3, f2)s]'(fi, f3) 

- 3 É * S V " ' p!(f2, fi)<(f3, f 2 ) ^ ( n , f3) 

- Pl(f2, fl)Sl (f3, f2)5^(fi, f3) 

+ f^trr Pl(f2, fi)^(f3, f 2 )^(f i , f3) 

+ SM p0(fi, f3)sf(f2l ri)sl(r3, f2) 

+ 3(5/37 po(f3, f2)sf (f2, fi)s7(fi, f3) 

+ 6pi(fi, f3)sf (f2, ri)sj(f3j f2) 

- 3<^7 pi(fi, r3)sf (f2, fi)s2(r3, f2) 

- 5/37 Pi(^3, r2)s?(f2, fi)s2(ri, f3) 
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+ *"3 ( s0
1(f1,f3)s0

2(r2, fi)s0
3(f3, f2) 

- o sil (n, r3)sQ2(f2, fi)si3(f3, f2) 

+ s ix (fi, f3) s^2 (r2, f i) 5 Q3 (r3,f2) 

- g «J1 (ri, r3)si2(f2, fi)si3(r3 , f2)) 

x [_ e / i 3/ x i ' i 4 e ^ ' i 4^ e 7M2 i / _(_ ^ ^ ^ ^ " e ^ l " 

_ e^3M4 eA»4^1" e7M2y _ e7A«3M4e/ ' i / '4i /
e^2 I /] (9.370) 

The contribution from the R-part of the double-exchange of the C-term is composed 

of 

/•i/-HF,CR,2x\ _ /T/rHF,CRl,2x\ , /T/HF,CR2,2x\ . /T/HF,CR3,2x\ . /T/HF,CR4,2x\ / n 071 \ 
\V3N I — \V3N I + \V3N I "r \V3N / + \V3N f (U-Od-) 

U „ /T/ -HF,CR1,2X\ /T/HF,CR2,2x\ /T/HF,CR3,2x\ , /T/HF,CR4,2x\ ^ , • 

wheve(V3N' ),{V3N )>(V3N' ),and(V3N> ). Denoting 

cm 
cm 
cm 
cm 

_ /TÆF,CRl,2x\ 
= \ V3N I > 

_ /T/HF.CR2,2x\ 
= \ ^ A ' / ' 

_ /T/HF,CR3,2xN 

= \ V3N I > 

/T/HF,CR4,2x\ 
— \ ^3,/V / ' 

these are given by 

CRl 

/3i /3o 71 70 
92 92 % Q3 

(få + ™%)(.<l3 + ™>l) 

e \ ^272 ^2^3 '32/i2 ^ ^ ^2^3 ^2^2/ 
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Si1(f2,fi)s12(f3,f2)so3(fi,f3) - ^1(f2,r1)so2(r3,f2)si3(ri,f3) 

+ e^m 502y2 «i1 (f2, ri) ( pi(r3, f2)p0(f1,f3) - p0(f3, r2)pi{ru f3) j 

- 8i1(r2,r1)s$i{f1,f3)pi(f3,r2) + s^1(f2,fl)si2(f3,f2)pQ(fi,f3) 

Sli x \ S2 (zf «I fa, 5 K fa, f2)p1(fi, f3) (9.372) 

, we have 

cm 

x 

f£) ?H / d r i d f 2 d f 3 Sjér d ^ 3 e i " 2 ' { ? 2 ~ ? l ) ^ 3 ( M ) 

/ii A, 71 79 
fe ?2 % <fe 

(gf + m^faf+ m£) 

e^nin (Æøjrø^g - ^ ^ 3 ^ 2 ) Si1(f3,r2)sJ|2(f2,ri)si3(f1,f3) 

+ e (—o /3272"/ t2/ i3 "̂ " "/32^2"72A«3 — ^2^3 ^2^2' 

x-h1 fa, f3)sj2(f2, f1)si3(r3, f2) 

1 C ^ "/S279 ^2^3 (^2^2 '2^3 ^2^3 72^2 ' 

x Sj* fa, f2) si2 (f2, ri) SQ3 (f 1, f3) 

+ e 1 1 1 (5/3272^2'i3 _ ^2^2 72^3 + 2̂̂ 3 i ^ J 

xsj1 (ri, f3)si2(f2, fi)si3(f3, f2) 

-e / 3 l7 l / i l^2^3sJ1(f3 , f2)s^(f2 )f1)S^3(f i , f3) 

-f i fvvéYWpi(r3,r2) L f a ^ p o f a f a ) - Pofafa^fafa,) 

+ e/?17l"1^272 ( silfa, r3)p0fa,fiffas,f2) 

- «i1 (f3, f2)p0(f2, n)pi(fi, f3) 

+ Si1(f3,f2)pi(f2,fi)p0(ri,f3) - s^fai,f3)pi(f2,fi)pifa3,f2) 

+ ^n i " i ( ^ 2 - ^ 2 ^ +e^2nsir2 - ^ n s ^ - e^ns^) 
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X Sl/
1
1(f3,f2)sU

1
2(fi,f3)po(f2.,fl) 

- i éVin^2»2 sJl(f3, fyspin, r3)Pl(f2! ri) 

_ i ^ n i ^ l " f - s ; i ( r 3 , f2)s]2(ri, f3)pi(f2, ri) 

+ sJJ1 (ri, r3)si2(r3, f2)pi(f2, n) 

- «i1 (r3, r2)so2 (r2, fi)pi(ri, r3) + s j 1 (f2, r i) .^2 (ri, r3)po(r3, f2) 

- s j 1 ^ , fi)so2(n, r=3)pi(r*3, f2) + S i 1 ^ , r2)si2(r2, fi)p0(ri,f3) 

- i ^ • V W f af Hr-3, r 2 )4 2 ( r i , r3)Pl(r2 , fi) 

+ «i1 (fi, f3)s0
2(r2, ri)pi(f3, f2) 

+ So1(fi,f2)si (f3,r2)pi(fi,f3) - sS1(ri,r3)s1
2(r2,ri)pi(r3,f2) 

- «i1 (f2, fi)s1
2(f3, f2)po(fi, f3) (9.373) 

CÆ3 &4 \ c4 

2/J /i 
| ^ [dndr2df3 f -l-dq2dq3én^2-n)é^-^-^ 

/3i /3o 71 70 
g2 g2 g3 g3 

(9l + m2)(g| + m2) 

x f sJ1 (f2, fi)Sj2 (f3, f2)s?3 (ri, f3) 

- 3 s j 1 (f2, ri)5o2(f3, r2)sj3(ri , f3) + 2si1(f2, f i ^ 2 ^ , r2)so3(fi, r3) 

+ e/3l7lpl ^ 2 7 2 s J^F^f i ) f 3po(f3,f2)po(fi,f3) - pi(f3,f2)pi(fi,r3) 

- e^Hl"l ^ 2 7 2 s?1 (f2, fi)2p1(f3, f2)po(fi, f3) 

+ i e 3 ni" le^2^2 ^ - 3 # (f2, ri)SJ2(f\, r ^ P o ^ , f2) 

+ s j 1 (f2, fi)si2(r!, f3)pi(f3, f2) 

^ 1 / V x\Jl2(x zf + 3s0
i(f2 ,ri)s0^(f3 ,f2)po(fi,f3) - 30

1(f2,fi)s1^(r3,f2)pi(ri,f3) 
Ml^v ^ ^ 2 / v ^ 
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+ 2 sf1 (f2, f i j s j^f i , f3)pi(f3, f2) - 2 sf1 (f2, fi)si2(r3 , f2)p0(fi; f3) 

(9.374) 

CRA 

/3i /3o 71 7 0 

x Q2 Q2 % % 

{ql + ml)(ql + ml) 

^ ( ^2^2 ^2^3 ^2^2 '2^3 ^2^3 '2^2' 

x f SsJ 1 ^ , f 2 ) s j 2 ( f 2 , f i ) s j 3 ( f i , r 3 ) 

- s^1 (f3, f2)sj2 (f2, f i)si3 (f*!, f3) - 2 si*1 (f3, f2)si2(f2, fi)s^(fu f3) 

"r C V /?oT2 ^2^3 i"2'i2 '2^3 ^2^3 '2^2' 

x ( 3SQ1 (fi, r3)sj2(r2, fi)sj3(f3, f2) 

^ 1 c^ ^ ^ ^2 / c.^3 Ci? i? «i (n,f3)s0
J(f2 , f1)s1

3(r3 , f2) - 2s0
i(fi ,f3)s1^(f2 ,fi)s1

3(r3 ,f2) . ' ' l j ^ 2 , / 3 c i ? i? 

+ ^ " I f y r ø ( - 3 so1 (ri, f3)p0(r'2, fOpoft, r,) 

+ 3 s J1 (f3, f2)p0 (f2, fi )po (fi, f3) 

+ Si1(f1,f3)p0(f2,f1)p1(f3,f2) ~ Si1(^3,r2)po(f2,fl)Pl(fl,f3) 

-2S i 1 ( f 3 , f 2 )p 1 ( f 2 , f i )p 0 ( f l , f 3 ) + 2SQ1(f1,f3)pi(f2,f1)p1(f3tf2) 

+ i ^ n i ^ 7 2 " f 3p0(f2,fi)po(n,f3)po(f3,r2) 

- 2p0(fi,f3)p1(f3,f2)pi(r2,r1) 

- po(f2, n)pi(f3, f2)pi(fi, f3) 

+ ^ m ^ ^ f 5 J i ( f 3 ! f 2 ) ^2 ( f i ; r - 3 ) p o ( f ? 2 i n ) 

- 3 s j 1 (^3, f2)so2(fi, r3)p0(f2, ri) 

272 



+ 2 si1 (f3, r 2) SQ2 ( f i , f3) pi (f2, r x) 

- i ^ H l ^ l - f - sjl (fi, r3)s?(F3 , r2)p0(r2, n ) 

+ 3 SQ1 (ri, r3)so2(f3, f2)p0(r2, fi) 

- 2 Sg1 (f1,f3)sl2(f3, f2)pi(f2, r i ) 

- 3 SQ1 ( f i , f3)so2(f2, f i )p0( f3 , f2) 

+ Si1 ( f i , f 3 )s?( f 2 , f i )p i ( f 3 , f2) 

+ 3 s j 1 (f3, r2)sl2(f2l f i )po( f i , f3) 

- Six (f3, f2)so2 (f2, f i ) p i ( f i , f3) 

- 2 « i 1 (f3, f2)si2(f2, f i ) p 0 ( r i , f3) 

- i ^ H i V ^ l " f - sp (f3, f 2 ) S ? ( r i , f3)po(r2, f i ) 

+ 3 s j 1 (f3, f2)s0
2 ( f i , r3)p0(f2, f i ) 

- 2 s j 1 (f3, f 2 ) s 0
2 ( f i , f3)pi(r2 , f i ) 

- 3 sp (f2, f i ) s 0
2 ( f i , f3)p0(r3, f2) 

^ l ^ - ^ ~ + s0
l(F2,fi)si ( f i , f 3 )p i ( f 3 , fa ) 

o^l ^ 2 / - -- 3 SQ1 (f2, fi)S0^(f3, f2)p0(f i, f3) 

+ «S1 (r2, f i )s!2 (f3, f2)pi( f i , f3) 

+ 2 « i 1 (f2, f i )s 0
2 ( f i , f3)pi(r3 , f2) 

+ 2 SQ1 ( f i , f ^ 2 (f2, f i )p i ( f 3 , f2) 

+ 2 «i x (f2, f i ) s x
2 (f3, f 2 )p 0 ( f i , f3) (9.375) 

For symmetric INM, this reduces to 

<̂ a 
HF,CR,2x,INM\ 

ZN I 
1±\2 £L - f dfidf2df3 Ijårdédé 
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0\ 02 Tl T2 
x e*92-(f2-?l) e i?3-(?3~fi) g2 92 ?3 93 

få + ™%)(<å + ml) 

e^lTp e«2T2- p0(f1? r3)po(r2; n)pofa, r2) 

while for unpolarized PNM, one has 

/T/HF,CR,2x,PNM\ 
\ V3N / 

9A_\ CA 3 

2/J /; 
| g / dfidf2df3 / j^-^dq2dq3 

(2TT) 

/3j /?2 71 72 
x e^-^2-**!) e ^ C ^ - q ) g2 92 93 % 

x 

tø+ "*)(«§+ "«) 
i3 c ^ l " e32T2- pn(ri, f3)pn(r2, ri)A,(r3, F2) 

(9.376) 

(9.377) 

For time-reversal invariant systems, there is no appreciable reduction in the size 

of the expressions. Thus, we avoid repeating the expressions. 

C-term contribution for specific systems 

Combining the expressions for the direct, single and double-exchanges for the case of 

symmetric INM, the contribution of the C-term to the HF energy of symmetric INM 

becomes 

/T /HF,C,INM\ 
\VZN I (27) Te f dfld^dr* f (2^)6^2d* S2'(rVrl) ^{^~fl 

x 

/3l 71 
Q2 13 

4 ^ ^ - + 2—g2 • 93 
(4 + mlM + ml) LV /.2 /.2 

x ( - 6 <^171 Po(n)po(r3, r2)p0{r2, r3) 

+ 3 Jøpj po(ri, r3)po(r2, r^po^-j, r2) 

- 6^f ^ 1 ^ 2 " qj2^2 ^ ( f ^ ) ^ , ^ ( r , , f2) . (9.378) 
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The contribution of the C-term to the HF energy of unpolarized PNM becomes 

X. 

J 7! J-K 

x i - 6d> l7 l p„(ri)pn(f3, f2)pn(f2, f3) 

+ 3 ^ 1 7 1 p„(fi, f3)pn(f2, ri)pn(r3, f2) 

- 6 ^ c ^ l ^ c ^ ^ ^ ^ P n C ^ r s K ^ , 5 ) ^ ( ^ 3 , r2) . (9.379) 

For time-reversal invariant systems, the HF energy contribution from the C-term 

is given by the sum of the direct, single and double-exchanges. Since there is no 

appreciable reduction in the complexity of the expressions even after the assumption 

of time-reversal invariance, the expressions are not reproduced here. 

9.10 Symbolic derivation of EDF-NNN-DME for 

time-reversal invariance 

In this section, we discuss some of the ingredients of the symbolic derivation of EDF-

NNN-DME, i.e. the EDF that we obtain after the application of the DME to the 

HF energy from chiral EFT NNN interaction at N2LO. The derivation is performed 

for time-reversal invariant systems. This should be kept in mind in subsequent dis-

cussions. In the final step which involves angular integrations, we assume spherical 

symmetry, which also implies time-reversal invariance. The symbolic steps required 

to relax this assumption and treat deformed time-reversal invariant systems is dis-

cussed in appendix 9.10.5. For the complete detail of the symbolic derivation, refer 

to Ref. [161]. 
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9.10.1 Generic DME ansatz 

In section 7.2.4, we discussed the merits of the symbolic derivation of EDF-NNN-DME 

starting from a generic DME ansatz. Here, we develop the generic ansatz for the basic 

nonlocal densities <?Ml(ri,fi + x3), <^2(fi + X2,ri) and <^3(fi + x3,fi + x2). These 

non-local densities can be scalar/vector, isoscalar/isovector. The basic objective of 

the DME ansatz is to approximate each of these non-local densities in terms of local 

densities, dependent on ri, and ir—functions which can depend on x2 and/or x3. 

In developing the DME ansatz for these nonlocal densities, we follow the same 

scheme as in section 5.3.6 where we relied on short-range/Taylor series expansion of 

the nonlocal densities. However, the formal expansion that is given in appendix 9.5.7 

in relation to the application of the DME to the HF energy from NN interactions 

cannot be used. With the aim of implementing the symbolic machinery in the most 

general way, the DME ansatz we need at this point should be general and complex 

enough so that it can be adopted to different special cases. For instance, for the 

analytical coupling calculation discussed in section 9.11, we adopted the generalized 

PSA-DME. This will have the benefit of minimizing the effort required to implement 

a different approximation of the nonlocal densities and obtain a new EDF (perhaps 

both in form and couplings). 

Imagine one wants to build an expansion scheme for q^l(ri, ri + a?3). In this case, 

we have a single nonlocality coordinate, a?3. The simplest route to a possible ansatz 

is one that applies Taylor series to the density about ri 

<^l(fi,ri+f3) ~ ^l(f i ) + £3-V V I (ri, f") - +K f 3'^')^ i ( f i ) 
r = f i 

(9.380) 
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where we truncated the expansion at second order, and hence we generalize it to 

+ in<i'2(n)ff3-v') ^i(fi) 

F —ri 

(9.381) 

Needless to say, the TT—functions and Q in Eqs. (9.381) are to be fixed by the 

choosen analytical/parameterized DME scheme. But, this route does not lead to the 

most general form of the ansatz. Rather, we follow a circuitous way which leads to a 

general ansatz with which Eq. (9.381), for example, can be recovered as a special case. 

Note that if we write < 1̂ (r=i, fx + f3) as q^l (R + r /2, R - R/2), where R = f+ l/2£3 

and r — — a?3, we can apply the DME derived in section 5.3. In order to arrive at a 

final expression which is separable in f\ and x3, we perform a short-range expansion 

(Taylor series) and truncate beyond second-order terms. Performing these set of steps 

yields 

^ l ( f i , f i+a? 3 ) KHkx3) 

1 f*i$. 

2 
2 

^(kx-^Hf,) + ^ n^'v(kx3)x3 • Vs"l(ri) 

+ 8 Ta1 ,(Arx 3)(f3-V) ^ l (Fi ) 

iIl1
1(A;a;3)x31 

7TQ1' (fex3)?!11 ' , 1(Fi) 

+i^'1(^3)^3.v)V1"1(rl)" 
1 

+ ^n^^Vl), (9.382) 

and the same form holds for ^{f\. f x + x2) after replacing x3 with xi- While 

^ 2 ( n + x2, ri) = ^ 2 *(f1} fi + f2) , 

277 



?"2(fi +x3,n) = q^in, n + f3) , (9.383) 

by time-reversal invariance. Hence, the corresponding ansatz is the same as the one 

in Eq. (9.382) as all quantities are real for the case of time-reversal invariant systems. 

«^3(ri + £3, fi + £2) has two nonlocality coordinates. Still, the set of steps applied to 

arrive at Eq. (9.382) can be applied to obtain 

<^3(fi + £3, fi + £2) ^ nJ3
/r(A;, £2, £3) ^ 3 ( n ) + ̂ ( ^ + £3)-V^3(f1) 

+ ^f(£2 + £3)-v) ^3(fi) 

* n i , / r (fc> ^ 2 , £3 ) (X21 - Xg1) 

X q^^O + i ^ + x^-V^1^) 

+i((£2 + £3).v)^i(rl)" 

+ 24 n2,/r(^' ^25 £3) f a;2 + ̂ 3 - 2^2 • £3 j ?^3(n) • 

(9.384) 

Unlike the ir—functions discussed so far, ITi 3r are not manifestly separable in £2 

and £3 and in fact depend on the relative orientation of the two vectors. This has 

an important implication for the analytical calculation of the couplings. Refer to 

section 9.11. 

Key points on the DME ansatz 

One notes that in the generic DME expansions given in Eqs. (9.382)-(9.384), each non-

local density can be either p0/i o r «b/i- To recap the notations used in the Eq.(9.382)-

(9.384), for example, q 1 ' refers to the local cartesian tensor spin-current density 

that results at first order gradient with respect to the relative gradient operator. To 

elaborate on this point, consider the ansatz as applied to po(fi, fi +£3). The resulting 
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expansion reads 

Poirufx+xs) ~ ng(te3) ^(kx^poifi) + - 7if (fcx3)x3 • Vpo(n) 

1 
+-TrZ(kx3)\x3- V ) po (ri) 

i Upi(kx3) xz
l 4{kx,)jll(ri) + ±4(kx3)x3 • V j l ( f i ) 

+^ 4(^3) fx3 • v j jtVi) 

+ ^ ^ ( ^ ^ ^ ( r l ) . (9.385) 

Hence, in the case where q^l = p0/i> then q 1 ' * = j A , i.e. the current density. Since 

we are dealing with time-reversal invariant systems, j 0 / i = 0. However, we did not set 

it to zero in Eqs. (9.382)-(9.383) as we wrote the equation to hold for both scalar and 

vector densities, and when <̂M1 = sQ/i, then q 1 ' 1 = Jo/ittl,„,, i.e. cartesian tensor 

spin-current density. As to q 1 in Eq .(9.385) and in general, it refers to a second 

order correction term in the expansion. It is analogous3 to | Ap — r + 3/5 k2
F p of the 

DME discussed in section 5.3.3. Obviously, q2
1 = 0 in the case where < 1̂ = «o/i- The 

same notation applies to <̂ 2 and <^3. 

Even though all notations and conventions have been explicitly given in Ta-

ble 1.2, we recap the ones used for the n—functions. Taking < 1̂ as an example, 

7TQ1' , TT^1' ,-K2
1' refer to the 7T—functions of the local part of the non-local density 

<̂ 1 and 7TQ1' ,TT1
1, , 7T21' refer to the zeroth, first and second n—functions for the 

local density that appears at first order with respect to the relative gradient opera

tor. Hence, these n—functions are equal to 7TQ,7rf,ir%,7i^,7r{,^ or 7TQ,7rf,7r|,TTQ,7rf,^ 

when ^ 1 = po/i or <̂*2 = SQ/J respectively. The example given in Eq.(9.385) il-

3It does not mean they are the same. 
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lustrates this statement explicitly. Since we are dealing with time-reversal invariant 

systems, TTQ. 7rf, 7r|, TTQ, 7rj, ^ are irrelevant. I10
J and Ilj* can be seen as some common 

prefactors while 112'' is the n—function of the second order eorrection. 

Comments on the DME ansatz 

The following comments are at play concerning the DME ansatz: (i) The ansatz 

is designed to be a general template on which all the known (and perhaps future) 

analytical/parameterized DMEs can be mapped. This can be done by setting the 

various ir—functions to the values dictated by the analytical/parameterized DME at 

hand. This allows for a minimal effort to adopt the symbolic machinery to specific 

cases, (ii) As mentioned at the beginning of this section, any discrepancy between the 

EDF that results after the application of the DME, and the exact NNN HF energy 

is solely due to the DME ansatz of the nonlocal densities and the ir—functions. This 

is a trivial statement in the case of two-body interactions. However, it is not so for 

three-body interactions as unless one makes a convenient coordinate choice, it is not 

trivial to treat even the non-DME part exactly. Thus, by improving the n—functions. 

one can hope to get better and better accuracy. 

9.10.2 The G-tensors and their analytical forms 

In sections 7.2.1- 7.2.1, we identified the three generic forms (Eqs. (9.406)-(7.2.1)) of 

the terms that occur in the HF energy from the chiral EFT NNN interaction at N2LO. 

We refer to the interaction form factors that enter these equations as G-tensors. They 

are of the form 

G0m^2(X2, x3, q2,93, u;) = / dQ^dH^ e^2-2e^3*3 
/3i 71 Øn 12 

Q2 I3Q2 % 

(<å + ™>1)(QI + ml)' 

(9.386) 
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G^(x2,x3,q2,q3,u) = J dQ^dQ^e^^n^ 
ø 1 

mi 

(9.387) 
0„i 

G0\x3,q3) = f d l L e t ^ , (9.388) 
J y* % + ml 

where dQq»
 a n d dflq„ reier to the differential solid angles of the two vectors, and 

u is the angle between x2 and x3. In the following, we derive the analytical forms 

of these tensors. Indices A,7i,/32,72 can take values {1,2,3} corresponding to the 

cartesian labels {x, y, z}. To obtain the analytical form for G/3l7l/3272(x2, x3, q2, q3, u), 

we define 

F^(x,q) = [dnqé^^-^r. (9.389) 
J q2 + ml 

In the case where the vector x is along the z direction, we denote the F13"'(x, q) tensor 

as Ff7(x, q). which equals 

F*{x,q) = 8^ j d n ^ Æ ^ ^ . (9.390) 

Denoting F]1 = Ff, Ff = Ff, Ff = Ff , we obtain 

™<) - -^^M' (9-39i) F""^ = -^Y^M' (9-392) 
F"^ = ?TSf ( 2 T J ° M " 4 * W ) ' (9'393) 

Next, we need to define a convenient coordinate system. If one could define both x2 

and x3 to be along the z direction of the coordinate system, the G-tensor could be 

calculated very easily. But in the actual case, one cannot, in general, define both x2 

and x3 to be along the z direction. Let x2 be such that it is along the z direction and 
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x% be in the x — z plane, with angle UJ between x2 and £3. Next, write 

G^l^"f2(x2,x3,q2,q3,u) = F^{x2,q2) F ^ f ø , q 3 ) 

= V 2
F z ^ 2 , 9 2 ) ^ 2 ( ^ 3 , 0 ; ) , (9.394) 

where due to the specific coordinate system chosen, the G-tensor will be nonzero 

only when /5j = fl2. The same cannot be said about 71 and 72. In the next step, 

we concentrate on F7l72(x3,g3,u;). One can calculate this quantity by performing a 

few steps involving rotation of the coordinate system. Hence, rotate the coordinate 

system with respect to the y-axis such that Æ3 aligns with the new z' axis. The 

rotation matrix for this operation reads 

R(w) = 

cos(u;) 0 —sin(a;) 

0 1 0 

, sin(c<;) 0 cos(u;) , 

The transformation of the various terms of F1^ is (obviously only the vectors get 

affected) 

etqSx3 

q 

Jhsz 

R~l%, 

(9.395) 

where we have left out other trivial terms. Using these intermediate results 

F^V2(x^q3,uj) = 8^^R-)1(u;)R-l1(u)F^{x^q-i) n»2 " l n 7 i v ; ^ 2 V (9.396) 
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Plugging this result into Eq. (9.394), one obtains the analytical form 

QPl-nØYV ( x 2 , X3, 92, 93, UJ) = 5pl02 R-^ (U) R~^ (u) F ^ 1 (X2, <fe) F?»(x3, q3) . 

(9.397) 

To calculate the related but different G tensor, G(3l(x2,x3,q2,q3,uj). we define 

Fffrq) = fdn^W-j^-z. (9.398) 

We represent the case where the veetor x is along the z axis by Ff (x, 9) 

F? {x, 9) = S30 f dnqe*-* -^—j , (9.399) 

where 8^ = Sz/3 and representing Fl = F£,F% = FJ, F2
3 = F | , we obtain 

(9.400) 

(9.401) 

3i(qx). (9.402) 

(9.403) 

Plugging this result 

G^(x2,x3,q2,q3,u) = S3pSZllR^(u)F^x2,q2)F^x3,q3). (9.404) 

Finally, we have a trivial tensor G defined in Eq. (9.388) is given by 

G^(x,q) = F^(x,q). (9.405) 

F?(x, 

FyM 

Fz
z(x, 

q) 

• Q) 

q) 

— 

= 

= 

0, 

0, 

i47T 
92 

9 
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9.10.3 Sample DME simplification 

After the specification of the DME ansatz and the analytical calculation of the G-

tensors, the next logical step is to plug them into the respective exact HF energy 

terms to obtain the EDF. We discuss the DME simpification by considering a term 

that has the form of Generic-Form-1. Consider 

x 5/3l7l b&2n po (ri, f3)po(r2, fi)po(f3, f2), (9.406) 

where we recap that LO is the angle between x2 and x3. According to the description 

given in section 7.2.1, this means, Eq. (9.406) corresponds to a case of Eq. (7.2.1) 

where C\ = 0, c2 = 0 c3 = 1 and 

^l{ri,f3) = Po(ri,f3), 

<^2(r3,fi) = Po(r3,n), 

<^3(f2,fi) = p0(r2,fi), 

where due to there being only scalar densities, the tensor Tp \%^0 is independent 

of {/ii, fi2, p3}- Refer to section 7.2.1 for the explanation of this notation. Plugging 

the DME ansatz discussed in the previous section, and noting that j9(fi) = 0 for 

time-reversal invariant systems, one obtains 

(V3N ' 1,p0p0'>0) ~ / dr1dx2dx3 dq2dq3 q\q\ G ^ l 7 ! ^ ( x 2 , x3, q2,q3,UJ) 6 ^ 6 ^ 

x (up
0(kx2) irg(kx2)po(ri) + -z Tt{{kx2)x3 • Vpo(fi) 

+-7r2
)(kx2)(x2-f) p0{n) 
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x ng(fcr3) 

+^2l(kx2)xW0(f1) 

Ko(kx3)p0(r1) + - Tr^(kx3)x3 • V/9o(n) 

+-TT%(kx3)( x3- V j po(n) 

+^KHkx3)xie0(r1fj 

x (IIJ/r(fc, x2, x3) f po(ri) + - (f2 + £3) • Vpo(fi) 

+ ^((x2 + x3)-V)2p0(f1)J 

+ ^ n i / v ^ * £2, æ3) (.^ + x\ - 2x2 • x3) ^(n) J, 

(9.408) 

where <^(fi) is the second-order correction density in the DME of the scalar density 

with the given coordinates. For instance, the generalized PSA-DME discussed in 

appendix 9.5.3 sets this correction density as 

4(n) = I Apo(fi) - ro(ri) + I 4po(rx). (9.409) 

The expressions given in appendix 9.9 show that we already have a very large number 

of terms in the exact HF energy, even for time-reversal invariant systems. The appli

cation of the DME increases the number of terms by at least an order of magnitude, 

further ruling out any hope for manual simplification. The next step in the symbolic 

simplification involves angular integrations with respect to the orientation of x2 and 

x3. 

Angular integrations for spherical systems 

From our sample DME simplification given in Eq. (9.408), it can be seen that we 

can perform the angular integrations with respect to the orientations of x2 and x3 
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if we solve one remaining problem. Le. obtain a separable expression for the n ? j r 

7T—functions that coup le x2 and x3. This holds for all II-^r n—functions used in 

the DME ansatz of <^(r*i + x2,f\ + x2). given in Eq. (9.384). Within the symbolic 

approach, we solve this problem by expanding these problematic TT—functions as 

nmax 

n=0 

'nniax(n) 

nifr{k,X2,X3) « ^ J ] fn'L(kx2) g"nlm(k^) 

m = 0 

(x2-x3)
n, (9.410) 

where /^(fca^) and g^^kx^) are unspecified scalar functions and the number of 

terms in the inner summation depends on the value of n, expressed as (mmax(n)). 

Note that the angular integrations (with respect to x2 and x3) do not require the 

values of fnm(kx2) and gnmi^^) to be specified. In addition, the special symbolic 

technique that we developed, Ref. [161], helped us avoid specifying mmax(n) which is 

not known anyways. As to nmax, we found that nmax = 5 suffices in the practical 

implementation [161]. In section 9.11.3, we discuss how these scalar functions are 

obtained for 11̂  , derived from the generalized PSA-DME. In addition, we show that 

at nmax > 5, Eq. (9.410) becomes practically exact for these it—functions. Actually, 

one can increase nmax for any 11^,r if there is a need. The only problem with increasing 

nmax to a mucli higher value is the rapid increase in the time-complexity of the 

symbolic computation. Similar to the application of the DME (ansatz) to the exact 

HF energy, the expansion of IT? -r introduces yet another increase in the number of 

terms to simplify. 

With this expansion at hand, we are able to perform the angular integrations 

with respect to x2 and xs. At this point, due to the complexity of the problem, 

we introduce the assumption of spherical symmetry. This implies that all the local 

densities depend only on the magnitude of the radial vector. In other words, we now 

have only three independent directions: x2, x3 and f*i. Appendix 9.10.5 discusses how 

we can relax this assumption. The generic form of the required angular integrations 
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for the case of spherical symmetry read 

/ dQX2dQX3 (f3 • V) (x2 • x3)
m\x2 <8> x3\

n(x2 • V)P (x2 <& n ) " 1 

( ^ « r i ) ^ ^ ® ^ ^ ® ^ , (9.411) 

where /, m, n and p are integers. The raaximum power of gradient in the DME ansatz 

for any density is fixed at two, hence, It {0,1,2} and also pt {0,1,2}. Due to the 

specific form of the ansatz, m e {0,1,2, 3,4,5,6,7,8,9,10} and n e {0,1, 2}. The ex-

ponents ni ,n2 ,n3 ,n4 e {0,1}. Even though the generic angular dependence given in 

Eq. (9.411) is very complex, all these terms do not occur at the same time. 

The origin of the various angular dependencies is (i) x^. V and i^-V are due to the 

DME ansatz, (ii) x2.x3 originates from the DME ansatz (Eqs. (9.382)-(9.384)), the ro-

tation matrix of the G tensors (Eq. (9.10.2)) and the expansion of II -^r (Eq. (9.410)) 

(iii) \x2 ® Xz\ comes from the rotation matrix in the G tensors and (iv) [x2 ®f\)\ 

where i e {1, 2,3,4} originate from the directional coupling in the DME of the vector 

density, s*0/i- Remember that in spherical symmetry, only the vector component of 

the cartesian spin-current tensor density is nonzero. The exponents ni, n2, «3 and 

714 can not be one at the same time i.e, at most only three of the exponents can be 

one at the same time. This is due to the fact that only three local/non-local densities 

(be it vector/scalar) densities appear in all terms of the exact 3NF HF energy. 

Due to the huge number of terms generated by the DME expansion, direct multi-

dimensional (four dimensions) angular integrations is both impossible and not re-

quired. Rather we developed a Mathematica rule-based technique to replace the 

multi-dimensional integrals with four independent single dimensional integrals. The 

merit of this technique is that one can calculate the single dimensional integrals once 

and use their stored values in the whole computation. The angular integrations is 
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followed by several symbolic manipulation techniques to obtain the final EDF. The 

details of these techniques can be found in Ref. [161]. We remark that the symbolic 

automation enabled us to keep all higher-order terms in the final EDF (up to sixth 

order) for whenever necessary. 

9.10.4 Contributions to EDF-NNN-DME 

In the following, we list the EDF, truncated at fourth-order, that results from the 

application of the DME on specific contributions to the HF energy (of time-reversa! 

invariant systems) from chiral EFT NNN interaction at N2LO. Due to the assumption 

of spherical symmetry that we imposed in the previous angular integration step, the 

given expressions hold only for spherical systems. The actual values of the couplings 

as a functional of the 7r—functions is found in the Mathematica files of Ref. [161]. 

First let us define the auxiliary quantity sL^r) as 

4/i (f) = r-Vpb/i(r) . (9.412) 

Also note that £Q/I (0 stands for the second-order correction density which in the case 

of generalized PSA-DME reads 

<o/i(0 = ^ A P O / I ( 0 - T0/1(f) + - 4 Po/i (f)- (9.413) 

Fourth order EDF from the D-term 

SD = J dr { ($ pl(r) + C?% p0(r) p\{f) + C*0 ̂  ^ 

+ CPy° pj(r)e0(r) + C^p^p^^f) 

+ CP°J° Mr) Jo(r) • Jo(f) + C^1
 Pl(r) J0(f) • Jx{r) 
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+ C^ p0(f) Mr) • J\{r) + Cf«VJ°VJ0 Po(r) [V • Ur)]2 

+ c ^ o ^ o ^ j o ( r l . A / o ( f ) + ^ 1 ^ 0 p i ( f ) j i ( r l . Ajo{f) 

+ C1
P l W°V J l px(r) V • Ur) V • £(*=) + C?V^ p0(r) [V • Uf)}2 

+ CJ°AJl
 P l ( r ) J0(r) • A/x(f) + C r 0 ' 1 ^ 1 p0(r) Ur) • A * (f)} . 

(9.414) 

Four th order EDF from the single-exchange piece of the D-like par t of the 

C-term 

£CD^ = Jdr { 4 m + C?"1 Po(r1 p\{f) + C ^ 1 A.(*0 Pi(*0 q 1 ^ 

+ C ^ V p % o ( r - ) V p o ( r ) - V p o ( r ) 

+ C ^ l V ^ p o ( r - ) V P l ( r ) . V p 1 ( r ) 

+ C2
P§^%g(r)Ap0(f) + C ^ l M A ^ P i ^ A ^ 

+ C2*°%^-K2(r) + c J °^Pd( f )p i ( f ) ? ? ( r ) 
2 1 2 

+ CP/°p2
0(f)c;1

0(f) + CP
2°

J° p0(r) J0(r) • J0(r) 

+ CP
2°

J" p0(r) Ur) • Jx{r) + C2
P°W°W° ^ [y . j ^ ] 2 

+ C2
P°J°AJo p0(r1 J0(r) • AJo(r) + C?™1™1 p,{r) [V • ^ ( r ) ] 2 

+ CP
2°

JlAJl p0(r*) Ur) • AUr)\ . (9.415) 

Four th order EDF from the double-exchange piece of the D-like par t of 

the C-term 

£CD'2x = fdr{c$pl(rl + CP
3
0P" Po(r) pl(r) + C 3

w } pQ{r) Pl(f) <J(f) 

+ C$Ap°pl(r)Ap0(r) + C$AP0 pl(r) APo(r) 
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+ C3
POPl^po(r-)p1(r)Ap1(r) + c j 5 ^ pg(r)<*(f) 

+ cf"0 P\{f) 4{f) + Cr1"" p0(r) P l(r) <?(f) 

+ C^pg(0<b1(f) + ^ p ? ( r ) ^ ( f ) 

+ C?J° pQ(r) Jo(f) • Mr) + CP
3
lJ°Jl

 Pl(f) JQ(f) • Ur) 
2 2 

+ C3'°
Jl po(f) Jx{r) • Url + et"0'0 Apo(r1 J0(?) • Url 

+ cfJ° <r0
2(r) J0(f) • J0(r) + C?>J° <>1 ^o(r) • Jo(f) 

+ cJP^J^po(r-).Uf)V.Ur) 

+ C3PoW°W%o(rl[V.Jo(r)]2 

+ C3
A P I J° J I APl(r) Jo(r) • j t ø + c f ° J l ,2(r1 Jo(»0 • W 

+ C3
V p i J l W oVp1(0-J1(r1V-J0(r) 

+ C3
n ' lAJ%1(f)J1(r).AJo(r) 

+ C3
APQJl Apo(f) /x(f) • Url + CY1 e0{r) Jx[f) • U?) , 

+ cj^ < (̂f) Url • Url + CV/lJ^h VPl(r) • /0(rO V • j t ø 

+ < l W ° V J V 1 (OV-Jo ( r )V-J 1 ( r ) 

+ (^"0J1VJ1 Vp0(r) • j t ø V • Url 

+ C ? W l V J l po(f) [V • Ur)}2 + C3
PlJ°AJl

 P l(r) /0(f) • A J t ø 

+ C3
P°JlAJl po(fO Ji(f) • AJ!(r) I . (9.416) 

Fourth order EDF from the Rl-double-exchange piece of the C-term 

£CR1'2x = J dr I CP^ Pl(r-) J0(r) • j t ø + C?^ p0(r) Ur) • Ur) 

+ C4
J lVJ°J1(f)-Ji(r)V-Jo(r) 

+ C4
J°J lVJlJ0(r)-J1(r)V-J1(rO 
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C, J n J i 
+ C} ° 1 ^(r) Jo(f) • /xCf) + c f P l J ° J l APl(r) /0(f) • j t ø 

2 

+ c}jQJlei{r)J0{r)-J1{r) 

+ C4
Vpi" , lW°V f t(f).J1(f)V.Jo(f) 

+ cJi J iA Jo ^ j t ø . A j o ( r 1 + ^ i A p o ( r 1 j ^ . j * ^ 

+ C?"1 <*(r) Jtø • j tø + C^1 ̂ (r) jtø • jtø 

+ QVpiJ°VJlVp1(r1.Jo(r)V-J1(r) 

+ C: i V J°V JVi(r lV-J 0 ( r )V.J 1 ( r ) 

+ C4
vflOJlVJl Vpo(r) • Ji(r) V • j t ø 

+ Cr°VJlVJlpo(r-)[V.J1(r)]2 

+ C?JoAJlft(^)/o(» !)-AJ1(^ 

+ Cr° J l A J l po(r1 Ji(r) • AJi(r) J . (9.417) 

Fourth order EDF from the R2-double-exchange piece of the C-term 

?CR2,2x jdf^pi^^r) + C^p0(r)Pl(r)<;?(r) 

2 
+ CP

5
lJ°Jl

 Pl(r) Ur) • Ur) + C^1 p0(r) J,{r) • Jx{r) 

+ CJ
5
lVJ° Mf) • Ur) V • Url + CJ

5°
JlVJl Url • U^ V • j t ø 

+ 4JQJl 4(7) Url • Url + C 5
A W l Apx(r) J0(0 • j t ø 

+ C ^ ° J l q2(r) /0(f) • Ur) + cJP^^ VPl(r) • Ur) V • j t ø 
2 

+ C5
Pl7lAJ° P l(r) j t ø • AJo(r) + C ^ 1 Apo(r) ̂ (f) • U^ 

+ cfl e0(r) Url • Url + ^ ^ ( r ) Ur) • Ur) 

+ C7"i- /O^ivp i(f).j0(f)v-J1(r) 

+ C V J ° V J l Pi ( r1V-J 0 ( r )V-J 1 ( r ) 
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+ C? W l W l A»(0[V. /x ( f ) ] 2 

+ C5
PlJ°AJlp1(r)J0(rl-AJ1(r) 

+ < ° J l A J l
 Po(r1 J t ø • AJx(f) } . (9.418) 

Fourth order EDF from the R3-double-exchange piece of the C-term 

?cm,2x = j dr I C6
P°J° p0(f) J0(f) • Mf) + C? JQJI pi (r) J0(f) • Mf) 

2 2 
+ CP

6°
Jl pQ(f) Mr) • Mr) + CyJ° J0(f) • J0(r) V • Mr) 

AVJ0 Tf*.T.(*\i7. T.(* ^ J 0 J 1 V J 1 r , + <V u Mf=) • MV V • Jo(r) + C?'1 x J0(f) Ji(r) V • ^ ( r ) 

+ C6
AP°J° ApD(f) J0(f) • Jo(r) + C?J° <T2(r) Jo(r) • Jo(#0 

+ Cl° ° ^(f) J0(r) • Mf) + C6
Vp°JoW° Vpo(r1 Jo(r) V • J0(f) 

+ CJ0W 0V. 0 ^ [ f . ^ ^ ^ + CP0 ,0A,0 M r l m A / o ( r 1 

+ #* V l
 ?J(*0 Jo(rl • j t ø + CAplJ0Jl APl(f) J0(f) • j t ø 

+ ^ J ° J l q2(r1 Jo(»0 • Ji(»0 + C6
VplJlW° VPl(r) • j t ø V • J0(f) 

+ CP
6
lJlAJ° Pl{f) Mr) • AJo(r) + C ^ 1 <*(f) Mf) • Mf) 

+CV p i J b WWP l(f).tøv-Ji(f) 

+ C6
PlVJ°Wlp1(r-)V-J0(r)V.J1(r) 

+ C6
P°WlVJlpo(rl[V-J1(rl]2 

+ C6
Pl'/oAJlpi(rOJo(r)-AJ1(r) 

+ c ^ l ^ l ^ j i ( r 1 . A / i ( f ) I ( 9 4 1 9 ) 

Fourth order EDF from the R4-double-exchange piece of the C-term 

?CR4,2x Jdf^Km+C^poir^pKf) 
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+ C 7
W } A . C f W O ^ + C^P°Pl(f)Ap0(r) 

,2.2 
+ CriAPlPo(rlp1(f)Ap1(rl + C?^pl(7)$(r) 

+ C^Kt(n^rl + C^p^p^^r) 
2 1 2 

+ C^0 pg(f) ^ (ri + C7
P0J° p0(f) Jo(rO • J0(f=) 

2 

+ C ; i J ° J l
 P l(f) Jo(f) • Ji(r1 + CP

7°
Jl po(r) j t ø • Mr) 

+ CJ
7°

VJ° J0(r) • Jo(r) V • Jo(f) + C,1 W ° Jx{f) • J^r) V • J0(r) 
9 

+ C 7
J ° J l W l Jo(r) Mr) V • Ji(f) + C7

AP°J° Apo(f) J t ø • ^o(r) 
2 2 1 2 

+ C7°
J° ?0

2(r1 Jo(r) • Jo(f) + C7°
J° ^( f ) J0(f) • J 0 (0 

+ C7
V"o7°Wo Vp0(rO Jo(r) V • J0(r1 

+ ^ w o v - 7 o p o ( r 1 [ v . j o ( r - ) ] 2 

+ C7
poJoAJ° po ( r l / o ( f ) . A /o ( f ) + <*Vi q l ( r1 / o ( r l . / i ( 0 

+ C7
APIJ0J1 AP l (0 J0(r) • j t ø + C ^ 0 ' 1 tf(f) /o(»0 • / i (0 

+ C 7
V ^ V J OVp 1 ( rO-J 1 ( r )V-Jo(f ) 

+ C7
P l J l A J%1(r)J1(r1.AJo(r) 

2 2 

+ C?-71 ^2(r) j t ø • Mr) + C7
V p i J°W l VP l(r) • J0(r) V • ^ ( f ) 

+ C7
P l W0V J lp i(r)V-Jo(r-OV-J1(f) 

+ C?VJ^p0(r-)[V.J1(f)}
2 

+ CP
7

lJ°AJlp1(f)J0(r)-AJ1(r) 

+ < ° J l A J l po(f) j t ø • AJx(r) } . (9.420) 

9.10.5 Extension to deformed time-reversal invariant systems 

The assumption of spherical symmetry was used to obtain the generic form of the 

angular integrations in Eq. (9.411). This can be relaxed to treat deformed time-

reversal invariant systems, though with a significant increase in the time-complexity 
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of the symbolic computation. In deformed systems, all local densities denoted here 

by, ^(r*i), depend on the orientation of f\. Hence. they come with their own direction, 

increasing the number of available vector directions to a much higher value than 

the three that we have in spherical systems (x2, #3 and fi). This entails changing 

the angular integration technique discussed in appendix 9.10.3 with symbolic tensor 

manipulation. To illustrate the difference between the two-techniques, consider a 

schematic example, perhaps misleading due to its simplicity, 

T = I dn2{x2-h){x2-V). (9.421) 

Note that V is acting on some unspecified local density which depends on f\. In the 

case of spherical symmetry, the action of V results in a gradient density that is along 

fi. Hence, T is written as 

/ 
(192 # 2 I V| cos2(02) sin(02), (9.422) 

which is directly integrable. In deformed systems, one can no longer assume that the 

direction of the local densities is along r\. Hence, one spells out Eq. (9.421) as 

ij J 

where i and j label the cartesian coordinates of the labels. A symbolic algorithm, 

a la the one developed for the angular integrations in appendix 9.10.3 needs to be 

developed that not only does the integration but also groups the tensor components 

so that a manifestly scalar EDF results. For details, refer to Ref. [162]. 
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9.11 Analytical couplings for the EDF from chiral 

EFT NNN interaction at N2LO 

9.11.1 Functional form of the couplings 

The main objective of this section is to motivate the analytical calculation of the 

couplings of the EDFs given in appendix 9.10.4, C,1 2 3 , by isolating the forms and 

types of integrals required. Note that at this stage, all required angular integra-

tions, viz, f dflq^ f dflqr., f dQx<2 and J d£lx„ have been carried out. Of course, 

f dflri is left intact as f\ is the coordinate of the local EDF. To recap, we per-

formed f dflq<2 and J dQq„ in appendix 9.10.2 where the G-tensors are discussed, while 

f dQx2 and f dflx„ are handled in appendix 9.10.3. Thus, the remaining integrals are 

/ dq2 q2, / dq3 ?f, / dx2 x\ and f dx3 x\. For the sake of notational simplicity, we use 

Il.V as it is rather than their separable expansion discussed in appendix 9.10.3. In 

the actual analytical calculation, the expansion is used. Refer to appendix 9.11.3 for 

details. After dropping all pre-factors, the couplings take the following general forms. 

Couplings from Generic-Form-1 

All the couplings that originate from Generic-Form-1 7.2.1 take the form 

12 3 f 
C* c c (A;) oe / dx2 dx3 dq2 dq3 x\ x\ q\ q\ x\x\ F^(x2,q2)F]{x3,q3) 

xn?( /cx 3 )7r? ' 0 / 1 (^ 3 ) 

xlft
2(kx2) TT7'°

 1(kx2) lQfr(x2,x3, k) (9.424) 

or 

C% ? s (k) oe / dx2dx3dq2dq3x\x\q\q\ xp
2xlF^(x2,q2)Fr(x3,q3) 
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xn?(b3)^'0/1fe) 
x n ? ( b 2 ) TTT {kx2) Ills

fr(x2,x3, fe) (9.425) 

where p, q, r, s, t. u, v, (3,7 take only integer values, F f , F]1 are given in Eqs.(9.391)-

(9.393) and F^F? are as defined in Eqs.(9.400)-(9.402). In fact, r,s.t,u,ve{0,1,2}, 

/?, 7 e {1, 2, 3}, while p, q e {0,1,2,3,4}. 

Couplings from Generic-Form-2 

All the couplings that originate from Generic-Form-2 7.2.1 take the form 

12 3 f 
C' ? ? (fe) oe / dx2dx3dq2dq3x\x\q\q\ x\x\ F^(x2,q2)F^{x3,q3) 

x U^fr(x2, x3, k) Uffr(x2, x3, fe) (9.426) 

or 

C? ? ? (fe) oe / dx2dx3dq2dq3x\x\q\q\ xp
2xlFW{x2,q2)F2\xz,q3) 

x n^3
/r.(x2, x3, fe) n j . r ( £ 2 , £3, fe) (9.427) 

where all the specifications given at the end of Eq. (9.424) regarding the indices and 

functions hold. 

Couplings from Generic-Form-3 

All the couplings that originate from Generic-Form-3 7.2.1 take the form 

c<w oe / dx3 dq3 xl qj xlF^(x3.,q3) 

xn?(fex3) 7r?'0/1(fea:3) ti?(kx3) 7r?'0/1(fex3) , (9.428) 

296 



where again all the specifications given at the end of Eq.(9.424) regarcling the indices 

hold and F™ is defined in Eqs.(9.391)-(9.393). 

9.11.2 Matching generalized PSA-DME against the DME-

ansatz 

At this point, we have the expressions for the couplings expressed as a functional 

of the 7T—functions of the DME ansatz discussed in appendix 9.10.1. In line with 

the view that the DME ansatz is just a general symbolic teraplate for an anlyti-

cal/parameterized DME, we fix the TT—functions of the DME ansatz with the gener

alized PSA-DME of appendix 9.5.3 (also discussed in sections 7.2.3) for the analytical 

calculation of the couplings. 

Adopting and matching the DME ansatz, Eq. (9.382), for pq(r\,ri + x2) with its 

generalized PSA-DME expansion, Eq. (9.211), the 7r—functions for this density read 

kFx2 

T\P(U \ 03i{kFx2) 
U^(kFx2) = 3 — , 

kFx2 

T${kFx2) = 1, ^(kFx2) = 0, < (kFx2) = 0, (9.429) 

where we set k — kF. Similar ir—functions hold for pq{f\ +x2,fi) due to the assump-

tion of time-reversal invariance, while for pq{f\, f\ + x3) and pq(fi + X3, f*i) one simply 

replaces x2 with x%. We leave the 7r—functions multiplying the time-odd densities 

unspecified. As to pq{?\ + x2. ri + x3), following the same set of steps 

UP tu - - \ * h(hF\x2 - xz\) %fr(kF,x2,x3) = 3 — — — , 
KF\X2 — X$\ 

rtP n - -\ Q Ji(kF\x2 — x3\) / n ,Q n \ 
Up

2fr{kF,x2,x3) = 3 — - r = ^ — , (9.430) 
KF\X2 — X3\ 
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where again time-reversal invariance implies the same set of 7r—functions for pq{f\ + 

£3, n + x2). 

The TV—functions for sq(fi,fi 4- £2) read 

nf(kFX2) = 8 ^ = 5 ) , 
KFX2 

^i{kFx2) = 1, n((kFx2) = 0, n{(kFx2) = 0. (9.431) 

Similar 7r—functions hold for sq(fi + x2, ri), while for ^ ( f i , fj. + x3) and sq(fi + X3, f*i), 

one simply replaces x2 with ic3. Again, we leave the TT—functions multiplying the 

time-odd densities unspecified. As to sq(fi + x2,f\ + x3), following the same set of 

steps 

TT* ru ~ -\ ^ h(kF\x2 - x3\) 
Ulfr(kF,x2,x3) = 3 rTT—, 

,J kF\x2 - x3| 
(9.432) 

where again time-reversal invariance implies the same TT—functions for sq(fi + x3, ri + 

£2)-

9.11.3 Application of Gegenbaur's addition theorem 

In appendix 9.10.3, we discussed the need for the separable expansion and its for

mal solution of Yl\jr(k,x2,x3). With the generalized PSA-DME used to fix the 

7T—functions of the DME ansatz, one can apply Gegenbaur's addition theorem, which 

is discussed in appendix 9.1.5 to the as of vet non-separable TT—functions given in 

the Eqs. (9.212), (9.213) and (9.230) : Up
Qfr, U

p
2fr and IlfJr. In this case, the non-

separability is due to the appearance of the following function in these ir—functions 

f(k,i,.g,) = jl[,fi 'ff . (9.433) 
k\x3 -x2\ 
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whose Gegenbaur expansion is obtained by using Eqs. (9.59) and (9.50). It reads 

f(k,x2,x3) 
7T J3/2(k\x3 -X2\) 

2 (k\x3 - f2 |)3/2 ' 

— W ^ E fa + f ) W * * * ) W * * * ) C3J2(cos(9)) ir fe x3x2 ^=Q l 

(9.434) 

where 0 is the angle between x2 and x3. A simple re-organization of the terms is needed 

to recast Eq. (9.434) in to the form of Eq. (9.410). There are several interesting 

characteristics of this expansion that make it highly applicable to this work: (i) 

It converges very fast, (ii) In combination with the symbolic integration technique 

mentioned in the next section (appendix 9.11.4), it makes the analytical computation 

of the couplings possible (iii) the validity of truncating the expansion at some value of 

fi can readily be tested with Mathematica. Our numerical experiments show that fj, > 

5 suffices for a practically perfect reproduction of the exact quantity. Furthermore, 

these numerical experiments show that the accuracy increases progressively as the 

value at which /i is truncated increases. This, seemingly trivial statement, is not 

obvious just from the expansion formula given in Eq. (9.434). In the following we test 

the accuracy of truncating the expansion at fj, = 5. For this, let us define /s(A;, x2, x3) 

as 

f5(k,x2,x3) = y ^ ^ ^ E ^ + | ) ^ ( ^ ) i M + i ( A : x 3 ) C f ( c o s ( ^ ) ) , 
V 7T K X$ X2 _n £ 

(9.435) 

and the ratio function R5(k,X2,x3,6) as 

R6(k,x2,x3,6) = ^ ^ r . (9.436) 

f5{k,x2,x3) 
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We plot R5(k,X2iX3,6) in Fig. 9.1, after absorbing the k dependence into X2 = 

kx2 and X3 — kx3. First, note that the region of interest for this work is set 

Angle = £ 

0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 
X2 X2 X2 

Figure 9.1: (Color online) R$(k, £2, ^3, 6) for a set of angles. 

by the range of nuclear interactions as x2 and £3 are relative coordinates and the 

k parameter, viz, the DME length scale. Setting k = kp ~ 1.42fm close to the 

saturation density of INM, and the a maximum range of about 5fm for the nuclear-

interaction range dependent pieces ,viz, x2 and x3, the region of interest becomes 
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X2 < 7.5 and X3 < 7.5. As can be seen from the plot, Fig. 7.3, R$(k, x2,X3,0) is 

close to one for most, if not all, of the region of interest. In fact, investigation of the 

actual numerical values shows that i?s(A;, x2, xs, 9) > 0.995 for most of the physically 

interesting region. Hence, for our calculation of the couplings, we truncated the 

expansion at // = 5. Further validation of the accuracy of Gegenbaur's expansion 

truncated at /x = 5 is discussed in section 7.3 where we compare results from Monte-

Carlo based calculation, which are essentially exact, with the ones based on the 

truncated Gegenbaur's expansion. 

Finally, it should be mentioned that, the Gegenbaur expansion of expressions 

containing higher order spherical bessel functions, such as jz(k\xz — x2\)/{k\xz — x2\)
3, 

have been found to be as accurate, though at this point their practical use is limited for 

this work. In order to compare the dependence of the couplings on the TV—functions, 

we have generated another set of couplings by setting H.2fr
 = 105^3(^(^3— x2\)/(k\xs — 

x2\)
3. This is based on the TV—functions extracted from the original DME of Ref. [170]. 

9.11.4 Analytical and symbolic integration 

With the use of the TV—functions specified in Eqs. 9.11.2 and the application of Gegen

baur^ addition theorem, the final step in the analytical calculation of the couplings 

Cj1 2 3 is the four-dimensional integration with respect to f dq2 dq$ dx2 dx3 q\ q\ x\ x\. 

At this point, each term in the expression for any of the couplings is separable in 

(?2s £2) and (#3, x3). This can be seen from the form of the generic couplings given in 

Eqs. (9.424)-(9.428) and the expansion discussed in appendix 9.11.3. 

We first perform the analytical integrations with respect to q2 and q3. Note that 

we have already absorbed all q2 and q3 dependencies into the G-tensors. Hence, the 

only integrals that we need to integrate out the q2 and g3 dependencies from the are 

/•oe 4 Z(T\ -mx 
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r d q ^ ? ^ = _ , M + , m ^ + , m ^ , (0.438) 
yoo ^3 ^ / a , \ e~mx g-mi 

X ^ ^ ^ ^ M = -*— + *m-^- + «-&> <9-439) 
where g stands for either q-2 or 93. These integrals can be obtained by following the 

steps: (i) Rewrite the fractional prefactors, for instance, qA/(q2+m2) as q2 — m2/(q2 + 

vu2) and (ii) Express the integral of the non-fractional piece in terms of 8{x) whereas 

that of the other piece can be found by standard contour integration. 

The subsequent integrations are with respect to x2 and x$. Even though each 

relevant term is separable in x2 and x3 and thus the integrals calculable separately, 

the required integrals are much more complex. In general, we need to obtain 

/•oe 

l • e-x^xnjv{x)jtl{x)dx, (9.440) 

where v > 0, [i > 0, whereas u > 0 is a real parameter and n is an integer. Conver-

gence of the integral requires that n+v+n > 0. Note that in our problem, u = kplmv. 

The application of Gegenbaur's expansion introduces higher order spherical Bessel 

functions. Le. if the expansion is truncated at /x = 5, up to sixth-order (je(x)) spher

ical Bessel functions are introduced. However, we are not aware of any analytical 

or symbolic integration technique that works for any values of the indices: {n, v, //} 

which satisfy the convergence criterion. Furthermore, we need to perform calcula-

tion of hundreds these integrals. In Ref. [157], we discuss how we solve this problem 

with the Mathematica package that we developed. In the package, we designed and 

implemented a symbolic integration algorithm that can calculate these integrals for 

any values of {n, v. fi}, which satisfy the convergence criterion, and gives the exact 

analytical expression. 

In principle, we have analytical expressions for the couplings at this point. How

ever, the actual Mathematica implementation of the DME starting from the exact 
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HF energy from the chiral EFT NNN interaction at N2LO has not been discussed. 

In Ref. [161], we give a detailed presentation of the symbolic implementation. We 

remark that the implementation is done in such a way that it can be adapted to 

deformed time-reversal invariant systems as discussed in appendix 9.10.5 with only a 

modest amount of change. The implementation for deformed time-reversal invariant 

systems will be the subject of a subsequent publication [162]. A detailed analysis 

and discussion of these couplings can be found in Ref. [160]. Finally, the lengths of 

the coupling expressions prevent us from reproducing even a single coupling in here. 

Consult the Mathematica files of Ref. [161]. 
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